Breaking News

Mikroorganisme, Bakteri dan Virus

Perkembangan Mikrobiologi
Sejarah perkembangan mikrobiologi sebelum ilmu pengetahuan dapat dibagi menjadi tiga periode. Periode pertama, dimulai dengan terbukanya rahasia suatu dunia mikroorganisme melalui pengamatan Leeuwenhoek pada tahun 1675.
Hal ini menimbulkan rasa ingin tahu di kalangan para ilmuwan mengenai asalmula kehidupan. Namun baru kurang lebih pada pertengahan tahun 1860an, ketika teori generatio spontanea dibuktikan ketidakbenarannya dan prinsip biogenesis diterima, pengetahuan mengenai mikroorganisme tidak lagi bersifat spekulatif semata-mata.
Perkembangan Teknik dan Cara Kerja di Laboratorium Mikrobiologi
Selama periode berikutnya antara tahun 1860 dan tahun 1900, banyak dilakukan penemuan dasar yang penting. Perkembangan teori nutfah panyakit dalam tahun1876, hal ini secara tiba-tiba menimbulkan minat terhadap prosedur laboratoris untuk mengisolasi dan mencirikan mikroorganisme. Didalam periode ini ditemukan banyak mikroorganisme penyebab penyakit serta metode-metode untuk mencegah dan mendiagnosis serta mengobati
penyakit-penyakit tersebut. Penemuan-penemuan di bidang mikrobiologi kedokteran membawa perombakan yang besar dan cepat di dalam praktik kedokteran.
Penelaah mikroorganisme di laboratorium dilakukan untuk berbagai tujuan. Misalnya untuk mengetahui identitas masing-masing mikroorganisme yang berbeda, atau proses biologi dasar yang dilakukan oleh mikroorganisme. Pada umumnya metode-metode yang tersedia bagi para mikrobiologiawan memungkinkan untuk pencirian mikroorganisme.

Aplikasi Mikrobiologi dalam Kehidupan Manusia
Mikroba memegang peranan penting dalam kehidupan manusia, karena mikroba memberikan keuntungan sekaligus kerugian bagi manusia. Mikroba yang menguntungkan memungkinkan manusia untuk memanfaatkan jasa dan produknya sekaligus. Sementara itu mikroba yang merugikan dapat menyebabkan penyakit pada tanaman, hewan ternak, bahkan manusia itu sendiri.
Untuk meminimalkan kerugian yang ditimbulkan oleh mikroba, maka manusia menerapkan berbagai teknologi untuk mengendalikan populasi mikroba itu. Pengendalian dilakukan secara kimiawi, fisikawi, mekanis dan sebagainya.

Protista Prokariotik
Keragaman bakteri sangat luas. Tidak seperti organisme lain yang mempunyai kisaran cirri morfologi, fisiologi, dan metabolik yang seluas dan menyamai bakteri. Sebagai contoh, riketsia adalah parasit intraselular, yang sepenuhnya bergantung pada sel inang untuk melakukan beberapa proses vital ataupun untuk memperoleh produk tertentu. Sebaliknya, bakteri genus Thiobacillus memperoleh energi dari oksidasi sulfur dan memperoleh karbon dari karbondioksida. Mikoplasma bentuk tubuhnya sederhana, dan bentuk terkecil tidak dapat dilihat jelas dengan mikroskop cahaya. Sebaliknya, Streptomicetes tumbuh menjadi filamen dengan panjang lebih dari 100 m
Protista Eukariotik
Algae adalah organisme eukariotik fotosintetik aerobik, yang mengandung klorofil a, klorofil lain, dan pigmen-pigmen fotosintetik lain. Pigmen-pigmen tersebut terletak di dalam kloroplas. Habitat algae di mana-mana, selama tersedia cahaya matahari, kelembagaan dan nutrien sederhana. Algae dapat uniselular atau multiselular dan dapat tertata dalam koloni filamen, atau bentuk-bentuk multiselular lainnya. Ada yang mikroskopik dan ada pula yang makrokospik.
Algae bereproduksi dengan cara aseksual dan seksual. Pada setiap tipe reproduksi mereka menggunakan banyak cara. Beberapa algae mempunyai daur hidup yang rumit yang mencakup cara-cara aseksual maupun seksual.
Protozoa mempunyai keragaman yang luas dalam ukuran dan bentuk. Beberapa spesies bersifat polimorfik. Banyak di antara mereka dapat membentuk sista, dan sista itu penting di dalama penularan penyakit-penyakit yang disebabkan oleh protozoa. Secara struktural protozoa lebih rumit dan biasanya lebih besar daripada protista prokariotik.
Reproduksi pada protozoa ialah melalui proses aseksual dan seksual, tergantung kepada spesies dan kondisi lingkungannya. Beberapa protozoa mempunyai daur hidup yang sangat rumit.
Protozoa memperoleh makanannya melalui banyak cara. Beberapa adalah fotosintetik, yang lain menyerap nutrient terlarut dan yang lain lagi menelan partikel-partikel makanan padat.
Berdasarkan cara pengerakannya terdapat empat kelompok utama protozoa. Kelompok-kelompok ini adalah amoeba, siliata, flagelata, dan sporozoa. Protozoa yang penting secara medis dijumpai di dalam ke empat kelompok tersebut.
Klasifikasi fungi didasarkan pada ciri-ciri morfologis, terutama struktur-struktur yang berkaitan dengan reproduksi, yaitu spora aseksual dan seksual serta tubuh buahnya. Namun demikian identifikasi khamir uniselular, seperti halnya bakteri, membutuhkan evaluasi terhadap banyak ciri fisiologis dan reaksi-reaksi biokimia terutama pada gula.
Ada empat kelas fungi : Phycomycetes, Ascomycetes, Basidiomycetes, dan Deuteromycetes. Kebanyakan fungi yang merupakan patogen bagi manusia dijumpai dalam kelas Deuteromycetes. Meskipun bukan merupakan kelompok taksonomi tunggal, kapang lendir (Mycomycetes) merupakan sekumpulan mikroorganisme renik yang mempunyai ciri-ciri serta daur hidup morfogenetik (berubah bentuk) seperti amoeba.

Isolasi Mikroba
Kulturisasi bakteri untuk keperluan yang bermanfaat, pada umumnya dilakukan dengan biakan murni. Biakan murni hanya mengandung satu jenis. Untuk mengisolasi bakteri dalam biakan murni, umumnya digunakan dua prosedur yaitu: metode agar cawan dengan goresan dan metode agar tuang.
Biakan adalah medium yang mengandung organisme hidup. Medium itu menye-diakan zat makanan untuk pertumbuhan bakteri. Berbagai resep ramuan untuk membuat media telah dibuat untuk memungkinkan tumbuhnya jenis-jenis tertentu. Medium pilihan dan diferensial bermaafaat untuk memisahkan beberapa jenis.
Identifikasi jenis menggunakan semua sifat yang berkaitan dengan jenis. Hal ini mencakup morfologi, daya gerak, sifat biokimianya, kebutuhan akan oksigen, reaksi pewarnaan Gram, dan beberapa diantaranya sifat kekebalan.
Dalam pemeliharaan kultur terdapat beberapa persyaratan yang harus dipenuhi sehingga tidak hanya mempertahankan sel agar tetap hidup, tetapi dapat juga memperta-hankan sifat-sifat genotip dan fenotipnya.
Terdapat 3 metode dalam pemeliharaan kultur, antara lain penyimpanan kultur dengan cara pengeringan; metabolisme terbatas; dan penyimpanan kultur dengan cara liofilisasi. Metode yang sering digunakan adalah pengeringan beku.

Pertumbuhan dan Multiplikasi
Pertumbuhan didefinisikan sebagai pertambahan kuantitas konstituen seluler dan struktur organisme yang dapat dinyatakan dengan ukuran, diikuti pertambahan jumlah, pertambahan ukuran sel, pertambahan berat atau massa dan parameter lain. Sebagai hasil pertambahan ukuran dan pembelahan sel atau pertambahan jumlah sel maka terjadi pertumbuhan populasi mikroba.
Pertumbuhan mikroba dalam suatu medium mengalami fase-fase yang berbeda, yang berturut-turut disebut dengan fase lag, fase eksponensial, fase stasioner dan fase kematian. Pada fase kematian eksponensial tidak diamati pada kondisi umum pertumbuhan kultur bakteri, kecuali bila kematian dipercepat dengan penambahan zat kimia toksik, panas atau radiasi.
Metode pengukuran pertumbuhan yang sering digunakan adalah dengan menentukan jumlah sel yang hidup dengan jalan menghitung koloni pada pelat agar dan menentukan jumlah total sel/jumlah massa sel. Selain itu dapat dilakukan dengan cara metode langsung dan metode tidak langsung. Dalam menentukan jumlah sel yang hidup dapat dilakukan penghitungan langsung sel secara mikroskopik, melalui 3 jenis metode yaitu metode: pelat sebar, pelat tuang dan most-probable number (MPN). Sedang untuk menentukan jumlah total sel dapat menggunakan alat yang khusus yaitu bejana Petrof-Hausser atau hemositometer. Penentuan jumlah total sel juga dapat dilakukan dengan metode turbidimetri yang menentukan: Volume sel mampat, berat sel, besarnya sel atau koloni, dan satu atau lebih produk metabolit. Penentuan kuantitatif metabolit ini dapat dilakukan dengan metode Kjeldahl.

Virus Bakterial
Bakteriofage (fage) adalah virus yang menginfeksi bakteri dan hanya dapat bereproduksi di dalam sel bakteri. Kemudahan relatif dalam penanganannya dan kesederhanaan infeksi fage bakteri membuatnya menjadi suatu sistem model bagi penelaahan patogenesitas virus maupun banyak masalah dasar di dalam biologi, termasuk biologi seluler dan molekular serta imunologi.
Fage pada hakekatnya terdiri dari sebuah inti asam nukleat yang terkemas di dalam selubung protein pelindung. Reproduksi virus bakterial yang virulen mencakup urutan umum sebagai berikut: adsorbsi partikel fage, penetrasi asam nukleat, replikasi asam nukleat virus, perakitan partikel-partikel fage baru, dan pembebasan partikel-partikel fage ini di dalam suatu ledakan bersamaan dengan terjadinya lisis sel inang. Fage-fage virulen telah digunakan untuk mendeteksi dan mengidentifikasi bakteri patogenik.
Virus Hewan dan Tumbuhan
Virus hewan dan virus tumbuhan adalah parasit intraseluler obligat yang sangat kecil. Setiap virion mempunyai sebuah inti pusat asam nukleat dikelilingi oleh kapsid. Secara morfologis, virus hewan dan virus tumbuhan dapat ikosashedral, helikal, bersampul atau kompleks.
Proses replikasi virus dimulai dengan melekatnya virion pada sel inang. Peristiwa ini disusul dengan penetrasi dan pelepasan selubung, biosintesis komponen-komponen virus dan perakitan serta pematangan virion. Proses ini diakhiri dengan pembebasan virus dari sel inang.
Dasar-dasar Klasifikasi
Penelaahan mengenai organisme untuk menetapkan suatu sistem klasifikasi yang mencerminkan dengan sebaik-baiknya semua persamaan dan perbedaannya dinamakan taksonomi. Kegiatan di dalam penyusunan taksonomi mikroorganisme adalah pengklasifikasian, penamaan dan pengidentifikasi yang kesemuanya disebut dengan sistematika mikroba.
Sistem klasifikasi biologi didasarkan pada hierarki taksonomi atau penamaan kelompok atau kategori yang menempatkan spesies pada satu ujung dunia dan di ujung dunia lainnya, dalam urutan: spesies – genus – famili ordo – kelas – filum atau divisi – dunia. Mikroorganisme, sebagaimana bentuk-bentuk kehidupan yang lain, diberi nama menurut nomenklatur sistem biner.
Klasifikasi bakteri menurut Bergey’s Manual of Determinative Bacteriology pada umumnya diterima secara internasional. Manual ini direvisi secara berkala untuk memanfaatkan pengetahuan baru melalui penelitian dengan mikroorganisme dan melalui teknik-teknik baru untuk menganilisis data yang diperoleh. Bergey’s Manual edisi kedelapan yang sekarang ini, membagi semua bakteri menjadi 19 bagian (kelompok), dan masing-masing dicirikan oleh sifat-sifat morfologi atau metabolik yang nyata. Tekanan diberikan pada pengelompokan bakteri yang memiliki ciri-ciri umum dan mudah dikenali. Tidak ada usaha untuk mengatur penempatan mikroorganisme yang mencerminkan skema suatu perkembangan evolusi, sebagaimana dilakukan pada edisi-edisi sebelumnya. Alasannya ialah karena dalam banyak hal pengetahuan kita mengenai mikroorganisme belum lengkap.
Bakteri, sebagaimana tampak melalui uraian singkat mengenai 19 kelompok, memperlihatkan keragaman yang luas. Tidak ada organisme lain yang mempunyai kisaran ciri morfologi, fisiologi, dan metabolik yang seluas dan menyamai bakteri.
Enzim dan Metabolisme Bakteri
Klasifikasi enzim berlaku hanya untuk enzim-enzim tunggal, penamaan berdasarkan reaksi yang dikerjakan oleh enzim tersebut dan ditambah akhiran – ase.
Menurut Comission on Enzymes of the International Union of Biochemistry terdapat enam kelas utama Enzim yaitu:
1.
Oksidoreduktase
—>
Reaksi transfer elektron (atau pemindahan atom hidrogen)
2.
Transferase
—>
Transfer gugusan fungsional (mencakup fosfat, amino,metil, dsb)
3.
Hidrolase
—>
Reaksi hidrolisis (penambahan molekul air untuk memecahkan ikatan kimiawi)
4.
Liase
—>
Penambahan ikatan ganda pada molekul dan pengusiran non hidrolitik gugusan kimia
5.
Isomerase
—>
Reaksi Isomerasi
6.
Ligase
—>
Pembentukan ikatan disertai pemecahan atau penambahan ATP
Keadaan yang mempengaruhi aktivitas enzim adalah:
  1. Konsentrasi enzim.
  2. Konsentrasi substrat.
  3. pH dan
  4. Suhu
Setiap enzim berfungsi optimal pada pH dan temperatur tertentu. Suhu yang sangat rendah dapat menghentikan aktivitas enzim tetapi tidak menghancurkannya. Aktivitas enzim diatur melalui 2 cara yaitu
  1. Pengendalian katalisis secara langsung dan
  2. Pengendalian genetik.
Metabolisme pada bakteri pada dasarnya seperti yang terjadi pada sel-sel organisme lain secara umum. Reaksi metabolisme terdiri atas dua proses yang berlawanan. Metabolisme pertama adalah sintesis protoplasma dan penggunaan energi disebut anabolisme. Metabolisme kedua yaitu suatu proses oksidasi substrat yang diikuti perolehan energi disebut katabolisme.

ENZIM
Enzim atau biokatalisator adalah katalisator organik yang dihasilkan oleh sel.Enzim sangat penting dalam kehidupan, karena semua reaksi metabolisme dikatalis oleh enzim. Jika tidak ada enzim, atau aktivitas enzim terganggu maka reaksi metabolisme sel akan terhambat hingga pertumbuhan sel juga terganggu.
Reaksi-reaksi enzimatik dibutuhkan agar bakteri dapat memperoleh makanan/ nutrient dalam keadaan terlarut yang dapat diserap ke dalam sel, memperoleh energi Kimia yang digunakan untuk biosintesis, perkembangbiakan, pergerakan, dan lain-lain.

1.       Nomenklatur Enzim
Biasanya enzim mempunyai akhiran –ase. Di depan –ase digunakan nama substrat di mana enzim itu bekerja., atau nama reaksi yang dikatalisis. Misal : selulase, dehidrogenase, urease, dan lain-lain. Tetapi pedoman pemberian nama tersebut diatas tidak selalu digunakann. Hal ini disebabkan nama tersebut digunakan sebelum pedoman pemberian nama diterima dan nama tersebut sudah umum digunakan. Misalnya pepsin, tripsin, dan lain-lain. Dalam Daftar Istilah Kimia Organik (1978), akhiran –ase tersebut diganti dengan –asa.

2.       Struktur Enzim
Pada mulanya enzim dianggap hanya terdiri dari protein dan memang ada enzim yang ternyata hanya tersusun dari protein saja. Misalnya pepsin dan tripsin.Tetapi ada juga enzim-enzim yang selain protein juga memerlukan komponen selain protein. Komponen selain protein pada enzim dinamakan kofaktor. Koenzim dapat merupakan ion logam/ metal, atau molekul organik yang dinamakan koenzim. Gabungan antara bagian protein enzim (apoenzim) dan kofaktor dinamakan holoenzim.
Enzim yang memerlukan ion logam sebagai kofaktornya dinamakan metaloenzim.. Ion logam ini berfungsi untuk menjadi pusat katalis primer, menjadi tempat untuk mengikat substrat, dan sebagai stabilisator supaya enzim tetap aktif.
Tabel 1.  Beberapa enzim yang mengandung ion logam sebagai kofaktornya
Ion logam
Enzim
Zn 2+



Mg2+


Fe2+ / Fe3+




Cu2+/ Cu+


K+

Na+


Alkohol dehidrogenase
Karbonat anhidrasa
Karboksipeptidasa

Fosfohidrolasa
Fosfotransferasa

Sitokrom
Peroksida
Katalasa
Feredoksin

Tirosina
Sitokrom oksidasa

Piruvat kinasa (juga memerlukan Mg2+)

Membrane sel ATPasa ( juga memerlukan K+ dan Mg2+)



3.       Aktivitas Enzim
Seperti halnya katalisator, enzim dapat mempercepat reaksi Kimia dengan menurunkan energi aktivasinya. Enzim tersebut akan bergabung sementara dengan reaktan sehingga mencapai keadaan transisi dengan energi aktivasi yang lebih rendah daripada energi aktivasi yang diperlukan untuk mencapai keadaan transisi tanpa bantuan katalisator atau enzim.

4.       Penggolongan (Klasifikasi) enzim
  1. Hidrolase
Hidrolase merupakan enzim-enzim yang menguraikan suatu zat dengan pertolongan air. Hidrolase dibagi atas kelompok kecil berdasarkan substratnya yaitu :
A.      Karbohidrase, yaitu enzim-enzim yang menguraikan golongan karbohidrat.
Kelompok ini masih dipecah lagi menurut karbohidrat yang diuraikannya, misal :
a.       Amilase, yaitu enzim yang menguraikan amilum (suatu polisakarida) menjadi maltosa 9 suatu disakarida).

amilase
 



                                            2 (C6H10O5)n + n H2O                 n C12H22O11

amilum
 


maltosa
 
                  
                                                                                  
b.       Maltase, yaitu enzim yang menguraikan maltosa menjadi glukosa

maltase
 


C12H22O11 + H20                 2 C6H12O6

maltosa
 

glukosa
 



c.        Sukrase, yaitu enzim yang mengubah sukrosa (gula tebu) menjadi glukosa dan fruktosa.
d.       Laktase, yaitu enzim yang mengubah laktase menjadi glukosa dan galaktosa.
e.        Selulase, emzim yang menguraikan selulosa ( suatu polisakarida) menjadi selobiosa ( suatu disakarida)
f.        Pektinase, yaitu enzim yang menguraikan pektin menjadi asam-pektin.

B.      Esterase, yaitu enzim-enzim yang memecah golongan ester.
  Contoh-contohnya :
a.       Lipase, yaitu enzim yang menguraikan lemak menjadi gliserol dan asam lemak.
b.       Fosfatase, yaitu enzim yang menguraikan suatu ester hingga terlepas asam fosfat.

C.      Proteinase atau Protease, yaitu enzim enzim yang menguraikan golongan protein.
Contoh-contohnya:
a.       Peptidase, yaitu enzim yang menguraikan peptida menjadi asam amino.
b.       Gelatinase, yaitu enzim yang menguraikan gelatin.
c.        Renin, yaitu enzim yang menguraikan kasein dari susu.

  1. Oksidase dan reduktase , yaitu enzime yang menolong dalam proses oksidasi dan reduksi.
Enzim Oksidase dibagi lagi menjadi;
a.       Dehidrogenase : enzim ini memegang peranan penting dalam mengubah zat-zat organik menjadi hasil-hasil oksidasi.
b.       Katalase : enzim yang menguraikan hidrogen peroksida menjadi air dan oksigen.
  1. Desmolase , yaitu enzim-enzim yang memutuskan ikatan-ikatan C-C, C-N dan beberapa ikatan lainnya.
Enzim Desmolase dibagi lagi menjadi :
a.       Karboksilase : yaitu enzim yang mengubah asam piruyat menjadi asetaldehida.
b.       Transaminase : yaitu enzim yang memindahkan gugusan amine dari suatu asam amino ke suatu asam organik sehingga yang terakhir ini berubah menjadi suatu asam amino.
Enzim juga dapat dibedakan menjadi eksoenzim dan endoenzim berdasarkan tempat kerjanya, ditinjau dari sel yang membentuknya.Eksoenzim ialah enzim yang aktivitasnya diluar sel. Endoenzim ialah enzim yang aktivitasnya didalam sel.
Selain eksoenzim dan endoenzim, dikenal juga enzim konstitutif dan enzim induktif. Enzim konstitutif ialah enzim yang dibentuk terus-menerus oleh sel tanpa peduli apakah substratnya ada atau tidak. Enzim induktif (enzim adaptif) ialah enzim yang dibentuk karena adanya rangsangan substrat atau senyawa  tertentu yang lain. Misalnya pembentukan enzim beta-galaktosida pada escherichia coli yang diinduksi oleh laktosa sebagai substratnya. Tetapi ada senyawa lain juga yang dapat menginduksi enzim tersebut walaupun tidak merupakan substarnya, yaitu melibiosa. Tanpa adanya laktosa atau melibiosa, maka enzim beta-galaktosidasa tidak disintesis, tetapi sintesisnya akan dimulai bila ditambahkan laktosa atau melibiosa.
5.  Koenzim
Dalam peranannya ,enzim sering memerlukan senyawa organik tertentu selain protein. Ditinjau dari fungsinya, dikenal adanya koenzim yang berperan sebagai pemindah hidrogen, pemindah elektron, pemindah gugusan kimia tertentu (“group transferring”) dan koenzim dari isomerasa dan liasa.
Tabel 2. Contoh-contoh koenzim dan peranannya
No
Kode
Singkatan dari
Yang dipindahkan
1.
NAD
Nikotinamida-adenina dinukleotida
Hidrogen
2.
NADP
Nikotinamida-adenina dinukleotida fosfat
Hidrogen
3.
FMN
Flavin mononukleotida
Hidrogen
4.
FAD
Flavin-adenina dinukleotida
Hidrogen
5.
Ko-Q
Koenzim Q atau Quinon
Hidrogen
6.
sit
Sitokrom
Elektron
7.
Fd
Ferredoksin
Elektron
8.
ATP
Adenosina trifosfat
Gugus fosfat
9.
PAPS
Fosfoadenil sulfat
Gugus sulfat
10.
UDP
Uridina difosfat
Gula
11.
Biotin
Biotin
Karboksil (CO2)
12.
Ko-A
Koenzim A
Asetil
13.
TPP
Tiamin pirofosfat
C2-aldehida
               
Enzim dalam darah dapat digolongkan berdasarkan sumber dan aktivitasnya, yaitu:
1. Enzim Spesifik Plasma
Enzim golongan ini dikeluarkan oleh organ tertentu ke dalam darah dalam keadaan aktif dan berfungsi di dalam darah.
Contoh :
- Faktor koagulasi : Faktor II (protrombin), Faktor X
- Cholesterol transferase dan Cholinesterase yang dibentuk oleh hati namun kerjanya didalam darah.
2. Enzim Selluler
Enzim golongan ini berfungsi dan dijumpai sangat banyak didalam sel. Enzim ini berada dalam darah karena adanya kerusakan sel (nekrosis) atau gangguan permeabilitas membrane sel.
Pada orang sehat, enzim golongan ini dipakai dalam darah dengan kadar yang rendah sebagai akibat pergantian sel yang normal, misalnya : SGOT dan SGPT.
3. Enzim Sekresi
Enzim golongan ini serupa dengan enzim seluler, tidak berfungsi di dalam darah dan normal dijumpai dalam darah dengan kadar yang rendah.
Adanya kadar tinggi enzim golongan ini dalam darah menunjukkan terjadinya gangguan dalam proses sekresi enzim ini. Contoh: alkali fosfatase, amilase dan lipase.

No comments