Spoilage and Safety of Preserved Foods
Spoilage is the reduction of food sensory quality - flavor, aroma, appearance, and texture. Spoiled food is not necessarily unsafe food. One can tell if a food is spoiled by looking at it, smelling it, or tasting it. One cannot tell if a food is unsafe by these methods. Unsafe food is food contaminated with pathogens. There are three ways that food becomes spoiled: chemical changes, physical changes, and microbial growth.
Chemical changes
Chemical reactions in foods are not usually reversible because they involve the formation of new compounds. The following are chemical reactions that spoil preserved food.
Enzymes. Enzymes are produced by all microorganisms for the purpose of catalyzing (speeding up) chemical reactions that are essential to life. Enzymes cause most spoilage due to chemical changes.
Enzymatic activity is temperature dependent. The activity also has a pH optimum and is influenced by the concentration of substrate. The activity of an enzyme or a system of enzymes can be destroyed at temperatures near 200oF. Freezing does not destroy enzymes. Enzymes retain some activity at temperatures as low as -100oF, although reaction rates are extremely slow at that temperature.
Animal enzyme systems tend to have optimum reaction rates at temperatures near 98.6oF (body temperature). Plant enzyme systems tend to have an optimum reaction rate at slightly lower temperatures.
The enzyme, polyphenol oxidase, exists in most fruits and vegetables and is the most common cause of enzymatic browning in fresh produce. In the presence of oxygen, this enzyme reacts with substrates in the food to produce browning.
Enzymes naturally present in vegetables are inactivated by a heat treatment, such as blanching. Blanching is the exposure of the vegetable to boiling water or steam for a brief period of time.
Enzymes naturally present in fruits can cause browning and the loss of vitamin C. The browning of apples and other light fruits is an enzyme-catalyzed reaction that occurs when the fruit is cut. Because fruits are usually served raw, they are usually not blanched because blanching would alter the taste and texture. Instead, the activity of enzymes in frozen fruits is controlled by using chemical compounds, such as ascorbic acid, lemon juice, or citric acid.
Oxidative rancidity. Oxidative rancidity is due to a chemical change in an unsaturated fatty acid. Polyunsaturated fatty acids are particularly susceptible because they contain more reaction sites than do saturated fatty acids. Foods high in polyunsaturated fatty acids (such as vegetable oils) tend to undergo oxidative rancidity more quickly than those with lower concentrations (such as lard). Hence, these foods have a shorter shelf -life, even in the freezer.
Oxidative rancidity takes place when oxygen molecules join with the double bond of a triglyceride molecule and break the molecule open. A variety of compounds are formed, which lead to off-odors and off-flavors. Heat, light, and traces of metals, such as copper and iron accelerate this reaction. Very small amounts of oxidized fat, such as in the cells of green peas, can also give food an unacceptable flavor.
The presence of antioxidants protects fats from oxidation. Examples of antioxidants commonly used in the food processing industry include the tocopherols (vitamin E), ascorbic acid (vitamin C), and the two additives butylated hydroxy anisole (BHA) and butylated hydroxy toluene (BHT). Sugar in cookies and biscuits also have an inhibiting effect on the onset of rancidity. Spices, such as cloves, allspice, rosemary, sage, oregano and thyme have been shown to improve the stability of fats.
Prooxidants promote the onset of rancidity. Prooxidants do not occur naturally in fats and oils in significant amounts. Metal ions, such as copper and iron, act as catalysts in rancidity reactions. For example, if rust forms on food preparation equipment, it readily dissolves; or if copper vessels are used, small amounts of copper oxide might be dissolved into the food. Therefore, the type of equipment used for food preparation can increase or decrease the onset of oxidative rancidity.
Other oxidation reactions. Certain food enzymes are oxidizing enzymes. These enzymes speed up chemical reactions between food and oxygen, and this leads to food spoilage. Although there are many oxidizing enzymes, two cause the darkening seen in diced and sliced vegetables. They are catalase and peroxidase. The browning of vegetables caused by these enzymes is often accompanied by the presence of off-flavors and odors. A mild heat treatment, such as blanching is used to inactivate these enzymes.
Oxygen can also cause deterioration of foods spontaneously by itself (with no enzymes). This process is called atmospheric oxidation or autooxidation. Oxidative deterioration is the chief cause of quality loss in fats. Vitamin C is used to pretreat foods before freezing and drying fruits to prevent oxidative color changes during storage.
Maillard browning. Maillard browning is a chemical reaction that takes place between the amino group of a free amino acid, or a free amino group on a protein chain and the carbonyl group, of a reducing sugar, such as glucose. Brown compounds are formed, which are responsible for the color of products such as bread crust, fried potatoes, baked cakes, and biscuits. The compounds also impart a desirable flavor to these foods.
Although this non-enzymatic reaction is generally considered desirable during cooking, there are two undesirable effects. First, there is some loss of the nutritional value of the proteins. Amino acids containing an extra amino group, such as lysine, are most likely to be involved. Secondly, the reaction can cause discoloration of foods during the storage of dried apricots, peaches, pears, and apples. Browning can be inhibited or slowed by sulfuring the fruit before drying. Another example is dried milk powder that turns brown when stored in a hot environment. Even though the color might be undesirable, these foods are safe to eat. The Maillard reaction can also be slowed by storing foods in a cool area (³70°F).
Hydrolysis. Hydrolysis is the splitting of molecules in a chemical reaction that involves water. When vegetables are blanched and canned fruits and vegetables are heat processed, certain components of their cell walls, such as hemicellulose, are softened by hydrolysis, resulting in a softer food. During the extraction step of jelly making, pectin is formed by hydrolysis of plant compounds. This pectin formation is critical for gelling.
Physical changes
Physical changes can also cause food to spoil. Bruising and puncturing tissue not only physically damages the food, but also provides openings through which microorganisms can enter and begin to grow. These openings also allow for enzyme activity because enzymes might come in contact with substrates that they normally could not.
Other examples of spoilage due to physical changes include:
· Changes in relative humidity - soggy cereals and the caking and lumping of dry foods like powders and cake mixtures result when excessive moisture condenses on the surface of the food. Mottling, crystallization, and stickiness are also characteristic of this type of spoilage. Cracking, splitting, and crumbling occur when excessive moisture is lost from foods.
· Uncontrolled cold temperatures - fruits and vegetables that accidentally freeze (or are frostbitten) and thaw have their texture and appearance affected. Skins and surfaces of these foods often crack, leaving them susceptible to microbial contamination and increased enzyme activity.
· Water loss or wilting - when raw foods are not properly packaged, evaporation of water occurs.
· Separation - if mayonnaise is frozen, the emulsion will break and the oil and water will separate. Whole milk that freezes will also have some defects. The fat will separate and the milk proteins will be denatured, causing the milk to curdle.
· Texture changes - rubbery egg whites and starchy pie fillings occur after freezing because the solids (protein or starch) can separate out from solution (water-based).
Microbial growth
Microorganisms are everywhere: in the air and soil, on people and animals, and on surfaces. Many are beneficial, such as starter cultures used for fermented dairy and meat foods, vinegar, and alcoholic beverages. Others cause food to spoil. Some are harmful and can cause death. One purpose of food preservation is to control the growth of microorganisms or to use beneficial microorganisms as part of a preservation process, such as the fermenting of pickles or the curing of meats. The microorganisms of most concern to the home food preserver are bacteria, yeast, and molds. These can cause food to spoil or to become unsafe.
Bacteria. Unlike animals and plants that are composed of many cells, bacteria are singled-celled organisms. Each bacterium is self-sufficient and is able to live independently. Bacteria come in a variety of shapes and cannot be seen without a microscope. Because they are about 1/25,000th of an inch long, they must be magnified about 1,000 times to be seen. To illustrate this, 400 million bacteria clumped together would be about the size of a grain of sugar. Bacteria serve three functions in food - beneficial, spoilage, and pathogenic.
Beneficial bacteria are used in the production of foods such as dairy foods (yogurt, cheese, and buttermilk), some pickle products, fermented meats, and vinegar. The addition of these microorganisms is essential to the creation of the characteristic flavors and/or textures of these foods.
Spoilage bacteria can alter flavor, texture, and composition. Spoiled food is not necessarily unsafe food. However, spoilage of preserved foods often means underprocessing, so pathogens might be present.
Pathogenic bacteria produce diseases in humans, animals, and plants. There are relatively few types that cause human illness. Pathogens include Escherichia coli 0157:H7 and Clostridium botulinum. These pathogens cause disease by growing on or in tissues and/or by producing harmful poisons or toxins which people and animals consume.
The botulinal toxin is so powerful that only a small amount is needed to kill a grown man. Historically, most deaths due to botulism were the result of improperly home canned food. Destruction of pathogens is the number one reason why research-based preservation methods must be used.
Two types of bacteria exist - sporeformers and non-spore formers. Spore-formers, such as C. botulinum, are of great concern to the home food preservation. Spores are able to survive a wide range of unfavorable conditions, such as heat and chemicals. Spores are like plant seeds, being in a dormant stage during the normal growth cycle of the microorganisms. The only way to destroy spores is to heat them to temperatures >240oF. This temperature can only be reached in a pressure canner. It cannot be reached in a water bath canner.
Yeast. Yeast are single-celled microorganisms that are usually larger than bacteria. Individually, yeast are invisible to the naked eye, but large masses can be seen easily. They are present in soil, in the air, on the skin, and in the intestines of animals and in some insects.
Yeast are the most important and widely used microorganisms in the food industry. They are beneficial and are used to make alcohol, vinegar, and soy sauce, and to leaven bread. They can cause spoilage when their growth is uncontrolled. Salt-tolerant yeast can spoil salted meats, fish, and soy sauces. They can also grow in brines containing cucumbers or meats. Yeast are non-pathogenic and so their presence does not necessarily mean that a food is unsafe to eat.
Molds. Molds are larger than bacteria and yeast and are easily visible to the naked eye. Molds do not grow as single cells, but rather are a group of cells that are very complex in structure. They are made up of hair-like filaments that form tangled masses, which spread rapidly on food surfaces. These filaments produce spores
Molds are everywhere: soil, air, water, decaying food, and other organic matter. Molds grow on many foods. Like bacteria and yeast, molds spoil food.
Unlike bacterial spores that are formed mainly when conditions are unfavorable, mold spores are the primary means of mold production. Mold spores are small and lightweight. They are carried by air currents (such as inside a refrigerator) to locations where favorable conditions allow new mold growth. These spores can remain suspended in the air for long periods and can travel great distances.
Molds have a variety of appearances. Some are loose and fluffy, while others are compact. Some are dry or powdery while others are wet or slimy. Most molds are white, dark or smoky in color while spores are usually brightly colored and are green, yellow, blue-green, orange, pink, brown, purple, gray, or black.
Molds are used in the manufacture of many foods and several food ingredients. Several types of cheeses - Blue, Roquefort, Camembert and Brie - are ripened by molds. Molds are also used in the production of foods like soy sauce, miso, and tempeh.
Molds are also involved in food spoilage. Molds grow on bread, cheese, fruits, vegetables, starchy foods, preserves, grains, and a wide variety of other foods, and produce undesirable characteristics.
Some molds produce mycotoxins (poisons), which have been detected primarily in grains and nuts. Some are suggested to be associated with some cancers.
Factors that Affect Microbial Growth
Bacteria, yeast, and molds grow in different ways. Bacterial growth is characterized by an increase in numbers, not in size. Under ideal conditions, bacteria reproduce every 30 minutes. In a very short period of time, bacteria could grow to large numbers. Many factors affect bacterial growth and will be addressed later in this chapter.
Yeast grow by a process known as budding. In one part of the cell, the cytoplasm (the site of most of the chemical reactions in the cell) bulges out of the cell wall. The bulge or "bud" grows in size and finally separates as a new yeast cell.
Molds grow by a process called branching. The mold forms a tangled mass that spreads rapidly and can cover several inches of an area in two to three days.
Temperature
Temperature is probably the single most important factor in controlling microbial growth. Yeast and molds are more heat-sensitive than are bacteria. They grow over a wide temperature range with the optimum being between 68oF and 86oF (room temperature storage). Many molds can grow well at refrigerator temperatures, which is why molds commonly cause spoilage of refrigerated foods. Molds and yeast are easily destroyed by mildly heating to 140oF or higher. This temperature is achieved during normal cooking, blanching, and pasteurization treatments. Severe heat treatments, such as pressure canning, are not needed to kill molds and yeast.
Bacteria, like yeast and molds, also grow over a wide temperature range. The lowest temperature at which bacteria have been reported to survive is -93oF; the highest is in excess of 194oF. It is customary to group bacteria in one of the following three temperature classifications.
Bacterial Growth under Ideal Conditions
___________________________________________
Time Number of bacteria
___________________________________________
12:00 noon 1
12:30 2
1:00 4
1:30 8
2:00 16
2:30 32
3:00 64
3:30 128
4:00 256
4:30 512
5:00 1024
5:30 2048
6:00 4096
6:30 8,192
7:00 16,384
7:30 32,768
8:00 65,536
___________________________________________
Three Temperature Classifications for Bacteria
_________________________________________________
Optimum temperature range
_________________________________________________
Psychrotrophs 58-68oF
Mesophiles 86-98oF
Thermophiles 131-149oF
_________________________________________________
Psychrotrophs grow well at refrigerator temperatures and so can cause spoilage of meats, fish, poultry, eggs, and other foods normally held at this temperature. None of the psychrotrophs, except C. botulinum type E and non-proteolytic strains of type B and F, are of concern to food that is safely preserved.
Most foodborne bacterial pathogens are mesophiles. They grow rapidly on foods held at room temperature. Mesophiles also can grow (slowly) on foods stored at refrigerator temperatures.
Thermophiles are bacteria that grow at higher temperatures and are of great concern in home food preservation. Thermophilic bacteria are found in soils, in manure and compost piles, and even in hot springs.
Many thermophiles are spore formers and are divided into two groups, based on the temperature at which the spores will germinate and grow. These two types are as follows:
· If the spores will not germinate and grow below 122oF, they are "obligate thermophiles."
· If growth occurs at temperatures of 100 to 150oF, they are "facultative."
Most thermophilic bacteria of importance in foods belong to the genera Bacillus and Clostridium. However, only a few species of these genera are thermophilic.
Storage temperatures. Storage temperature is the most important factor that affects the microbial spoilage of perishable foods. The rate of spoilage of fresh poultry at 50oF is about twice that at 41oF; spoilage at 59oF is about three times that at 41oF. Generally, the colder the food is kept, the longer its shelf life. At refrigeration temperatures for every 10oF rise in temperature, the rate of chemical reactions is approximately doubled.
Heat transfer in food preservation
Heat is used to kill spoilage and pathogenic microorganisms and to destroy enzymes that are naturally present in foods. Examples of heating include blanching, pasteurization, water bath canning, and pressure canning.
Foodborne Microorganisms of Concern in Preserved Foods
________________________________________________________________
Beneficial microorganisms
Bacteria
Acetobacter Vinegar
Lactobacillus acidophilus Acidophilus milk
Lactobacillus bulgaris Buttermilk, yogurt
Lactic starter cultures Cheeses
Lactococcus plantarum Fermented pickles
Leuconostoc mesenteroides Olives
Pediococcus cerevisiae Lebanon bologna
Molds
Aspergillus Country-cured hams
Penicillium Country-cured hams
Soy sauce, miso and tempeh
Yeast
Saccharomyces cerevisiae Beer and ale, whiskey, cider
________________________________________________________________
Spoilage microorganisms
Bacteria
Bacillus stearothermophilus Meat, vegetable mixtures
Clostridium lufernemtars Low-acid foods
Clostridium nigrificans Meat, vegetable mixtures
Clostridium thermosacchanolificums Low-acid foods
Flavobacterium sp. Refrigerated meats and vegetables
Proteus sp. Meats and vegetables
Pseudomonas sp. Refrigerated fresh foods
Serratia sp. Refrigerated vegetables and meats
Molds
Byssochlamys fulva Canned and bottled fruits
Byssochlamys nivea Canned and bottled fruits
Neosartorya fischeri Canned and bottled fruits
Rhizopus Black spot on frozen beef and mutton
Talaromyces flavus Canned and bottled fruits
Yeast
Saccharomyces bailii Tomato sauce, mayonnaise,
salad dressing, soft drinks,
fruit juices, ciders and wines
________________________________________________________________
Pathogenic microorganisms
Bacteria
Clostridium botulinum Canned low-acid foods,
vacuum-packaged fish
________________________________________________________________
Heat transfer requires a difference in temperature between the heat source (boiling water or steam) and the material (food in a canning jar or a cooking vessel) absorbing it. Heat energy flows only in one direction, from hot to cold bodies. If a hot and cold body are allowed to come to equilibrium, the hot body will cool and the cold body will warm. Thus heat is transferred from the boiling water or steam to the center of the food. There are three ways to propagate heat energy: convection, conduction and radiation.
>
Convection. Heat transfer through convection currents is limited to gases and liquids, which can transmit portions of them from one place to another. Whether air or liquid is heated, convection currents flow from the denser to the less dense areas. The portions of air or liquid nearest the heat are the first to become warm and less dense; they rise and are replaced by the more dense and cooler portions of the material.
When canning food, heat penetration is a combination of convection and conduction (discussion below). Heat transfer by convection must be accompanied by some conduction heating. Heat transfer is accomplished through the free-flowing liquid in the jar or can. The general trend of the current is usually in a vertical direction. When solid materials obstruct the progress, the currents flow around the solid material at the nearest point at which they can pass. For this reason, the alignment of certain foods in the can is of the greatest importance in regard to heat penetration.
Therefore, following the packing directions is very important in canning. For example, the processing times for soup mixtures are based on being able to heat by convection. Pack solid soup ingredients in the jar first; packing until the jar is one-half full of solids. The remainder of the jar space is then filled with liquid.
The heating of solids also brings about differences in density. Because movement of solids is impossible, convection currents alone cannot be used for canning. Heating through conduction must also take place.
Conduction. All food is made of molecules that are always vibrating. The addition of heat to food makes the molecules vibrate more rapidly, so adjacent molecules strike against each other. Molecules with greater energy lose some of their energy to those with less. This action continues until the molecules far removed from the source of heat receive some of that transmitted energy through conduction.
The food touching the sides of the glass jar heats first. That heat is then transferred inward toward the colder food. The time it takes to heat an entire jar of food is dependent on its density, volume and water content.
Solidly packed foods, such as meat and fish, and heavily matted foods or very viscous liquid-solid, such as spinach or pumpkin are heated by conduction. Conduction heating is very slow compared to convection heating.
Radiation. Radiation heating is the transfer of heat in the same manner as light, and with the same velocity. Radiation (such as in a microwave) is not recommended as the heat treatment for most preservation methods. It can be used to blanch vegetables, prepare jelly mixtures, and dry herbs. Other than preparing or processing these foods, microwave heating (radiation) should not be used for food preservation.
Determining processing times. The amount of heat required for commercial sterilization depends on several factors. Commercial sterilization is the degree of sterilization at which all pathogenic and toxin-forming microorganisms have been destroyed, as well as all other types of microorganisms, which if present could grow in the food and produce spoilage under normal handling and storage conditions. Commercially sterile foods might contain a small number of resistant bacterial spores, but these will not normally multiply in the food if the food is stored at temperatures hotter than 100oF.
Home canning of low-acid foods is generally designed to eliminate C. botulinum and its spores, the most dangerous and heat-resistant microorganism likely to be present. Home canning procedures for high-acid foods, pickles, and jellied products are designed to destroy yeast, molds, and non-spore forming bacteria. Foods are classified into one of three groups depending on their pH.
Factors Affecting Processing Times of Canned Foods:
1. The size of the jar and the nature of its contents. Heat transfer is longer in large jars. Also, heat transfer is faster in soups and liquid foods than in meats and vegetables because heat transfer is primarily by convection rather than conduction.
2. The pH of the food. Lower pH decreases the processing time and the temperature of the heat treatment.
3. The heat resistance of spoilage and pathogenic microorganisms targeted to be destroyed. Spores require a heat treatment of at least 240oF, where as, molds and yeast are destroyed at 140oF.
4. The heating characteristics of the food.
Foods are classified into three groups based on acidity:
1. High-acid foods have a pH below 3.7. Examples of high-acid foods include apples, jellied products, and some plums. Very few bacteria can survive or grow under high acid conditions. However, yeast and molds can grow in these foods. A mild heat treatment is necessary to eliminate yeast and molds. Heating to 212oF for eight to 16 minutes is usually sufficient. Bacterial spores can survive but they cannot germinate and therefore cannot cause spoilage or foodborne illness.
1. Medium acid foods have a pH between 3.7 and 4.5. Examples of medium acid foods include most fruits and pickles. Many spoilage bacteria are able to grow in this pH range and therefore the heat treatment required is more severe than for high-acid foods. However, the pH is still too low to allow the germination and outgrowth of C. botulinum. For most, heating in a water bath for 10 to 40 minutes is usually sufficient.
2. Low acid foods have a pH above 4.5. These foods include meat, fish, and most vegetables. In order to ensure complete destruction of bacteria, especially C. botulinum spores, it is essential that these foods are subjected to a severe heat treatment (pressure canning).
Processing times are based on all parts of the food being heated to a specified endpoint temperature. All points within a jar being heated are not at the same temperature. The zone of slowest heating is called the cold point of a jar. It is that zone which is more difficult to process due to the lag in heating. With foods heated mainly by convection the cold point is on the vertical axis, near the bottom of the jar. Foods heated by conduction have the point of slowest heating approaching the center of the jar on the vertical axis.
Theoretically, foods could be processed at 15 pounds pressure for a shorter time and the food would be safe. However, because exact processing times are not available through a reliable source, this practice cannot be recommended.
Water
Microorganisms, like all other organisms, require water to live. In the absence of water, microorganisms die. Therefore, it is important to evaluate the amount of water in any given food to determine if it can support the growth of microorganisms.
Water makes up about 70% or more of the weight of most foods. Fresh fruits and vegetables are usually between 90 and 95% water. Water greatly affects the keeping qualities of food. Excessive moisture can result in physical changes, chemical reactions, and microbial growth. Water content (or percent water) is not the same as water activity. Knowing the water activity of a specific food (and not just the percent water) is essential to determining what microorganisms are capable of growing in a specific food.
Water in food is classified according to its biological activity and is either "free" or "bound." Free water is water not bound to any food molecules in a food. Therefore, it is available for use by microorganisms for their growth. It is also available for chemical reactions within the food. Bound water is physically bound to large molecules, such as protein, in the food. It is not available to microorganisms for their growth and cannot participate in chemical reactions.
Microorganisms have no mouth so food must be in a soluble form to enter the cell through the cell wall. Microorganisms need water to dissolve the food they use. The dissolved food can then move into bacterial, yeast, and mold cells, where it is used for life functions. Water also allows waste products to escape from the cells. The water activity of a food also allows chemical reactions to occur between molecules in the food. Without sufficient available water, the inflow and the outflow of food residues and cell body fluids would be impossible, and the microorganisms would die.
The water activity of most fresh (unprocessed) foods is above 0.90. In general, bacteria require more water (increased aw) than do yeast and molds. For example, most spoilage bacteria do not grow below aw = 0.91, while spoilage molds can grow at an aw as low as 0.80. With respect to foodborne bacterial pathogens, Staphylococcus aureus, grows at a water activity as low as 0.86 while C. botulinum does not grow at a water activity below 0.94.
Water activity is also decreased during preservation by freezing and the addition of additives. Freezing of foods changes water from liquid to solid form and makes the water unavailable to microorganisms and chemical reactions. Salt and sugar, the most common food additives, are used in many foods to bind water, thereby making it less available for microbial growth and chemical reactions.
Acidity (pH)
The tartness or sour taste of citrus fruits, pickled vegetables and yogurt is the result of how much acid is in these foods. Acidity plays a primary role in the preservation of fermented and pickled foods and has been used for centuries to preserve foods.
Some foods are naturally acidic - citrus fruits, apples, and strawberries. The amount of acid also can be increased in foods through microbial fermentation. For example, Lactobacillus sp. can be added directly to foods to produce yogurt, buttermilk, and fermented meats. Acid also can be added directly to a food. Acetic acid (vinegar) is added to fish and vegetables to pickle them; citric acid is added to some beverages as a preservative.
The intensity of the acid in a food is expressed by its pH value. The pH scale is from 0 (almost pure acid, such as battery acid) to 14 (almost pure alkali, such as lye). The middle value, 7, is called "neutral." Most foods have a pH in the range of 3 to 7. The pH scale is based on the number of dissociated hydrogen ions (H+) in the food.
pH Values of Common Acids, Bases and Other Substances
___________________________________________________________
ACIDS
Hydrochloric acid 1.0
Sulfuric acid 1.2
Lemon juice (citric acid) 2.0
Vinegar (acetic acid) 2.9
Alum 3.2
Boric acid 5.2
BASES
Sodium bicarbonate 8.4
Egg whites 8.0 - 9.0
Borax 9.2
Ammonia 11.1
Lime 12.3
___________________________________________________________
Water Properties of Select Foods
______________________________________________________________________
Food aw Percent Water
______________________________________________________________________
Apples 0.97 84.1
Avocados 65.4
Bananas 0.97 74.8
Beans 0.97 88.9
Carrots 0.97 88.2
Celery 0.97 93.7
Cheese 0.95 37 - 38
Cucumbers 0.97 96.1
Eggs - 67
Fish, fresh 0.99 62 - 85
Grapes 0.97 81.9
Meat, fresh 0.99 62 - 77
Meat, cured 0.87 47 - 54
Oranges 0.97 87.2
Poultry, fresh 0.99 74
Pumpkins - 90.5
Squash, summer - 95.0
Syrup, maple 0.90 25.0
Tomatoes - 94.7
Water 1.00 100
Watermelon 0.97 92.1
______________________________________________________________________
Cereals 0.65 - 0.75 7.0
Dried fruits 0.60 - 0.75 varies
Honey 0.75 18.0
Jams 0.81 - 0.91 84.0
Parmesan cheese 0.76 18.0
Sweetened condensed milk 0.83 27.0
Uncooked rice 0.80 - 0.87 12.0
_______________________________________________________________________
Dried whole milk 0.20 2.0
Sugar 0.19 0.5
______________________________________________________________________
Approximate pH Values of Selected Foods
___________________________________________________________________________
Food pH Food pH
___________________________________________________________________________
Vegetables Fruits
Asparagus 5.7-6.1 Apples 2.9-3.3
Beans (string and Lima) 4.6-6.5 Bananas 4.5-4.7
Beets (sugar) 4.2-4.4 Figs 4.6
Broccoli 6.5 Grapefruit juice 3.0
Brussels sprouts 6.3 Limes 1.8-2.0
Cabbage (green) 5.4-6.0 Melons (honeydew) 6.3-6.7
Carrots 4.9-5.2 Oranges (juice) 3.6-4.3
Cauliflower 5.6 Plums 2.8-4.6
Celery 5.7-6.0 Watermelon 5.2-5.6
Corn (sweet) 7.3 Grapes 3.4-4.5
Eggplant 4.5
Lettuce 6.0 Fish and shellfish
Olives 3.6-3.8 Fish (most species) 6.6-6.8
Onions (red) 5.3-5.8 Clams 6.5
Parsley 5.7-6.0 Crabs 7.0
Parsnip 5.3 Oysters 4.8-6.3
Potatoes (tuber & sweet) 5.3-5.6 Tuna fish 5.2-6.1
Pumpkin 4.8-5.2 Shrimp 6.8-7.0
Rhubarb 3.1-3.4 Salmon 6.1-6.3
Spinach 5.5-6.0 White fish 5.5
Squash 5.0-5.4
Tomatoes (whole) 4.2-4.3 Meat and Poultry
Turnips 5.2-5.5 Beef (ground) 5.1-6.2
Ham 5.9-6.1
Dairy Foods Veal 6.0
Butter 6.1-6.4 Chicken 6.2-6.4
Buttermilk 4.5
Milk 6.3-6.5
Cream 6.5
Cheese (American mild
and cheddar) 4.9-5.9
___________________________________________________________________________
pH controls microbial growth in foods by: a) directly inhibiting microbial growth and b) reducing the heat resistance of the microorganisms. Most yeast grow best in an acid environment - pH of 4.0 to 4.5 and lower. Yeast do not grow well in alkaline (above 7.0) conditions. Molds grow over the widest pH range (pH 2.0 to 9.0) but most grow best in acid conditions. Molds grow more slowly than bacteria or yeast, so when conditions favor all three types of microorganisms, molds do not grow very well due to competition from the others.
Most bacteria grow best at pH values around 7.0 (6.6 to 7.5). As the pH increases or decreases, conditions for the bacterial growth and survival become less favorable. When pH values decrease to less than 4.0 or higher than 9.0, bacterial growth slows and some bacteria die. All fruits (except melons), pickles, vinegar, and wines all fall below the point at which bacteria normally grow. The excellent keeping quality of these foods is due to their low pH. Fresh fruits generally undergo mold and yeast spoilage. This is because these microorganisms can grow at a lower pH, the range of pH values for most fruits.
Oxygen
The air we breathe can support the growth of bacteria. Air consists: 78% nitrogen, 21% oxygen and a 1% mixture of several other gases. Oxygen in the air provides conditions that enhance the growth of some microorganisms.
Some bacteria require oxygen to grow; others do not. Those that require oxygen are “aerobes.” Those that grow in the absence of oxygen are "anaerobes." Most bacteria are neither strict aerobes nor anaerobes but can tolerate to some degree either the presence or absence of oxygen. These are "facultative anaerobes." Mold and most yeast require oxygen to grow; some fermentative yeast can grow slowly without oxygen. Thus molds and yeast typically grow on the surface of food, where they are exposed to oxygen.
Nutrients
All microorganisms require nutrients to live and grow. Microorganisms need:
· energy, usually obtained from a substance containing carbon;
· nitrogen for protein synthesis;
· vitamins; and
· minerals.
Yeast. Yeast can grow in a variety of foods but grow best in foods that contain carbohydrates (sugar and starch) and acid. They also need nitrogen and several minerals. Under optimal conditions, yeast usually produce carbon dioxide and ethyl alcohol.
Molds. Molds can grow in situations where bacteria cannot survive. Molds can utilize many kinds of foods from simple sugars to complex carbohydrates like starch and cellulose. They also need nitrogen and trace minerals for growth. Some molds require vitamins.
Bacteria. Bacteria require solutions of sugars or other carbohydrates, proteins, and small amounts of other materials such as phosphates, chlorides, and calcium.
Post Comment
No comments