Breaking News

Pengolahan Biodiesel Kelapa Sawit

Biodiesel adalah bioenergi atau bahan bakar nabati yang dibuat dari minyak nabati yang baru maupun dari minyak nabati bekas penggorengan melalui proses transesterifikasi, esterifikasi, maupun proses esterifikasi–transesterifikasi. Dengan memanfaatkan kelapa sawit sebagai bahan bakunya, dapat dihasilkan biodiesel CPO, biodiesel PFAD, Biodiesel Olein maupun biodiesel stearin.
Biodiesel sebagai bioenergi digunakan sebagai bahan bakar alternatif pengganti BBM pada motor diesel.  Biodiesel dapat digunakan baik dalam bentuk  100 % (B100) atau campuran dengan minyak solar pada tingkat konsentrasi tertentu (BXX) seperti 10 persen biodiesel dicampur dengan 90 persen solar dikenal dengan nama B10. Campuran biodiesel dengan solar yang ada di pasaran dikenal dengan biosolar.
Biosolar merupakan campuran antara 95% solar produksi kilang Balongan dan 5% Fatty Acid Methyl Ester (FAME). Biosolar ini merupakan nama dagang pertamina untuk bahan bakar motor (mesin) diesel yang merupakan campuran biodiesel di dalam solar. Biosolar merupakan salah satu bahan bakar alternatif yang ramah lingkungan. Secara umum, biosolar lebih baik karena ramah lingkungan, pembakarannya bersih, biodegradable, mudah dikemas dan disimpan, serta merupakan bahan bakar yang dapat diperbaharui. Selain itu, mesin atau alat yang menggunakan biosolar tidak perlu dimodifikasi. Biosolar juga dapat memperpanjang umur mesin dan menjamin keandalan mesin dengan lubrisitas atau pelumas maksimum 400 mikron.
Bahan bakar yang berbentuk cair ini memiliki sifat menyerupai solar sehingga sangat prospektif untuk dikembangkan.  Disamping sifatnya yang menyerupai solar, biodiesel memiliki kelebihan dibandingkan dengan solar. Kelebihan biodiesel dibanding solar adalah sebagai berikut: merupakan bahan bakar yang ramah lingkungan karena menghasilkan emisi yang jauh lebih baik (free sulphur, smoke number rendah) sesuai dengan isu-isu global, setana number lebih tinggi (> 57) sehingga efisiensi pembakaran lebih baik dibandingkan dengan minyak kasar, memiliki sifat pelumasan terhadap piston mesin; biodegradable (dapat terurai), merupakan renewable energy karena terbuat dari bahan alam yang dapat diperbarui, dan meningkatkan independensi suplai bahan bakar karena dapat diproduksi secara lokal.

Deskripsi Proses Biodiesel
Dalam pengertian populer dewasa ini, yang dimaksud dengan biodiesel adalah bahan bakar mesin diesel yang terdiri atas ester-ester metil (atau etil) asam-asam lemak. Dibuat dari minyak-lemak nabati dengan proses metanolisis atau etanolisis, produk sampingnya berupa gliserol.  Atau dari asam lemak (bebas) dengan proses esterifikasi dengan metanol atau etanol, produk sampingnya berupa air.
Produk biodiesel mentah (kasar) yang dihasilkan proses metanolisis biasanya harus dimurnikan dari pengotor-pengotor seperti sisa-sisa metanol, katalis, dan gliserol. Fase gliserol-metanol bebas-air maupun fase gliserol-metanol-air dapat diolah lebih lanjut untuk menghasilkan gliserol dan metanol (untuk didaur ulang). Proses pembuatan biodiesel dilakukan melalui proses-proses berikut ini.
a. Alkoholisis (atau transesterifikasi) trigliserida dengan metanol atau etanol.
Trigliserida adalah triester dari gliserol dengan asam-asam lemak, yaitu asam-asam karboksilat beratom karbon 6 s/d 30.  Persamaan stoikiometri generik reaksi transesterifikasi trigliserida dengan metanol adalah sebagai berikut 
Transesterifikasi dengan alkohol juga dikenal dengan nama alkoholisis sehingga reaksi di atas disebut juga metanolisis. Tanpa adanya katalis, sebenarnya reaksi berlangsung amat lambat. Katalis bisa berupa zat yang bersifat basa, asam, atau enzim [Schuchardt dkk. (1998), Lotero dkk. (2005), Fukuda dkk. (2001)].  Efek pelancaran reaksi dari katalis basa adalah yang paling besar, sehingga katalis inilah yang sekarang lazim diterapkan dalam praktek. Reaksi metanolisisnya sendiri sebenarnya berlangsung dalam tiga tahap sebagai berikut :
Katalis basa yang paling populer untuk reaksi transesterifikasi adalah natrium hidroksida, kalium hidroksida, natrium metilat (metoksida), dan kalium metilat. Katalis sejati bagi reaksi sebenarnya adalah ion metilat (metoksida) yang jika pun katalis yang ditambahkan adalah hidroksida, akan terbentuk melalui reaksi kesetimbangan :

OH¾  +  CH3OH     H2O  +  CH3O¾

Mekanisme reaksi pembentukan produk ester metil asam lemak pada tiap siklus katalitiknya adalah sebagai berikut (mekanisme serupa berlangsung pada konversi digliserida menjadi monogliserida dan monogliserida menjadi gliserol)
Dengan katalis basa, reaksi metanolisis dapat berlangsung cepat pada temperatur-temperatur relatif rendah (temperatur kamar sampai titik didih normal metanol, yaitu 65oC) [Formo (1954)]. Karena ini, kebanyakan proses industrial/komersial beroperasi pada rentang temperatur ini dan tekanan atmosferik; katalis yang ditambahkan biasanya sebanyak 0.5–1.5 persen dari berat minyak yang diolah.
Wright dkk. (1944) dan Freedman dkk. (1984), yang menyelidiki ulang (atau memverifikasi) kondisi proses yang diklaim Bardshaw and Meuly (1942, 1944), menyatakan bahwa untuk mendapatkan perolehan ester yang maksimum, bahan mentah yang digunakan dalam proses metanolisis trigliserida berkatalis basa harus memenuhi persyaratan sebagai minyak yang betul-betul mulus (murni) (fully refined) seperti minyak goreng, yaitu angka asam < 1 dan kadar air < 0,3 %. Jika bahan mentah (kasar) memenuhi syarat ini, maka dengan katalis basa (natrium metilat ataupun hidroksida) dan pada temperatur 60–65 oC, nisbah molar (metanol/minyak) paling sedikitnya 6 : 1 (yaitu minimum 2 kali nisbah stoikiometrik), konversi ke ester metil sudah praktis sempurna dalam waktu 1 jam. Pada suatu temperatur yang lebih rendah, yakni 32 oC, derajat metanolisis sudah mencapai 99 % dalam tempo sekitar 4 jam.
Standardisasi Biodiesel Indonesia SNI-04-7182-2006 menunjukkan bahwa biodiesel komersial di Indonesia harus berkadar ester metil paling sedikitnya 96,5 %-berat dan berkadar gliserol total (yaitu yang bebas maupun terikat dalam bentuk sisa-sisa trigliserida, digliserida, dan monogliserida) tak lebih dari 0,24 %-berat. Perlu pula dicatat bahwa konversi minyak ke ester metil disertai penurunan drastis viskositas dan nilai viskositas biodiesel yang di atas persyaratan biasanya menunjukkan kadar sisa-sisa gliserida dan gliserol yang masih agak tinggi. Karena penyingkiran sisa-sisa trigliserida, digliserida, dan monogliserida dari produk reaksi merupakan operasi yang sulit (atau mahal), persyaratan kadar ester metil dan kadar gliserol total (+ nilai viskositas) tersebut berarti bahwa transesterifikasi harus dilakukan sampai konversi gliserida-gliserida ke ester metil praktis sempurna.  Ini dapat dicapai dengan menerapkan kondisi-kondisi reaksi yang sudah disebutkan di atas. Untuk menurunkan lagi jumlah metanol yang dibutuhkan untuk mencapai konversi sempurna tersebut, misalnya sampai kira-kira 1,5 x nisbah stoikiometrik, transesterifikasi dapat juga dilaksanakan dalam 2 tahap atau lebih, yang masing-masingnya bisa dilakukan pada temperatur maupun jumlah metanol yang sama maupun berbeda.
Transesterifikasi sebenarnya adalah reaksi kesetimbangan, sekalipun posisi kesetimbangannya sangat berat ke pihak pembentukan produk. Pengamatan-pengamatan terhadap data literatur menunjukkan bahwa konversi kesetimbangannya makin besar (mendekati 100 %) jika temperatur lebih rendah. Oleh karena itu, mendekati akhir dari pelaksanaan proses transesterifikasi, temperatur reaksi sebaiknya diupayakan serendah mungkin. 
Campuran reaksi di dalam proses-proses transesterifikasi yang diulas di atas adalah sistem dua fase (yaitu terdiri atas fase minyak dan fase alkohol).  Untuk lebih mempercepat lagi reaksi metanolisis (sehingga transesterifikasinya bisa selesai, misalnya saja, hanya dalam beberapa menit), beberapa pengembang proses telah menambahkan pelarut, misalnya saja tetrahidrofuran, yang mampu membuat campuran reaksi menjadi suatu fase tunggal (cosolvent). Akan tetapi, penambahan pelarut biasanya sangat memperbesar nilai minimum nisbah molar alkohol : minyak dan juga mengubah parameter-parameter lainnya. Tambahan pula, tahap-tahap pengolahan pasca transesterifikasi menjadi  lebih rumit, karena adanya kebutuhan untuk menjumput (to recover) dan mendaur-ulang pelarut tersebut.  

b. Esterifikasi asam-asam lemak (bebas) dengan metanol atau etanol.
Berlawanan dengan reaksi transesterifikasi trigliserida, esterifikasi asam-asam lemak, 
Reaksi ini merupakan reaksi kesetimbangan yang lambat, sekalipun sudah dipercepat dengan kehadiran katalis yang baik dan berjumlah cukup. Katalis-katalis yang cocok adalah zat berkarakter asam kuat, sehingga asam sulfat, asam sulfonat organik (dalam jumlah 1 sampai 3 % dari asam lemak yang diolah), atau resin penukar kation asam kuat merupakan katalis-katalis yang biasa terpilih dalam praktek industrial.
Posisi kesetimbangan reaksi esterifikasi juga tidak sangat berpihak kepada pembentukan ester metil, sehingga untuk mendorong agar reaksi bisa berlangsung sampai ke konversi sempurna pada temperatur relatif rendah (misalnya paling tinggi 120 oC), reaktan metanol harus ada/dipasok dalam jumlah sangat berlebih (biasanya lebih besar dari 10 x nisbah stoikiometrik) dan air produk ikutan reaksi harus disingkirkan dari fase reaksi, yaitu fase minyak. Penyingkiran air ini dapat ditempuh dengan berbagai cara alternatif :
  • menguapkan fase akuatik atau alkohol, mengadsorpsi uap air, serta kemudian mengembunkan uap metanol kering untuk dikembalikan ke dalam bejana reaksi [Harrison dkk. (1968)];
  • mengabsorpsi air yang terbentuk dengan garam-garam anhidrat yang membentuk padatan berhidrat (misalnya CaCl2 or CaSO4); atau
  • mengekstrak air yang terbentuk dengan suatu cairan ‘penyeret’ (entraining agent) seperti gliserol, etilen glikol, atau propilen glikol [Lepper dkk. (1986)].       

Biodiesel mentah (kasar) yang dihasilkan proses transesterifikasi minyak (atau esterifikasi asam-asam lemak) biasanya masih mengandung sisa-sisa katalis, metanol, dan gliserol (atau air). Untuk memurnikannya, biodiesel mentah (kasar) tersebut bisa dicuci dengan air, sehingga  pengotor-pengotor tersebut larut ke dalam dan terbawa oleh fase air pencuci yang selanjutnya dipisahkan. Porsi pertama dari air yang dipakai mencuci disarankan mengandung sedikit asam/basa untuk menetralkan sisa-sisa katalis. Biodiesel yang sudah dicuci kemudian dikeringkan pada kondisi vakum untuk menghasilkan produk yang jernih (pertanda bebas air) dan bertitik nyala ³ 100 oC (pertanda bebas metanol).
Melalui kombinasi-kombinasi yang jitu dari kondisi-kondisi reaksi dan metode penyingkiran air, dan barangkali juga dengan pelaksanaan reaksi secara bertahap, konversi sempurna asam-asam lemak ke ester metilnya dapat dituntaskan dalam waktu 1 sampai beberapa jam.
Proses transesterifikasi dan esterifikasi dapat digabungkan untuk mengolah bahan baku dengan kandungan asam lemak bebas sedang sampai tinggi seperti CPO low grade, maupun PFAD.

Pembuatan Bio oil berbasis limbah pengolahan kelapa sawit
Bio oil adalah bahan bakar cair dari biomassa seperti kayu, kulit kayu, kertas, atau biomassa lainnya, yang diproduksi melalui teknologi pyrolysis (pirolisa) atau fast pyrolysis (pirolisa cepat), berwarna gelap dan memiliki aroma seperti asap. Fast pyrolysis adalah dekomposisi termal dari komponen organik tanpa kehadiran oksigen dalam prosesnya untuk menghasilkan cairan, gas, dan arang.  Cairan yang dihasilkan ini lebih lanjut kita kenal sebagai bio oil.
Proses produksi bio oil dimulai dengan mempersiapkan bahan baku lignoselulosa seperti kayu atau limbah agroindustri menjadi partikel–partikel yang lebih kecil hingga diameter kurang dari 1 mm. Pengecilan ukuran dimaksudkan untuk mempercepat reaksi pirolisis. Bahan kemudian dimasukan ke dalam reaktor yang dipanaskan pada suhu 450 – 500°C tanpa kehadiran oksigen.  Bahan baku akan terbakar dan akan menguap seperti droplet yang dilemparkan air ke dalam permukaan wajan panas. Di dalam reaktor pirolisis, partikel akan dikonversi menjadi uap yang dapat dikondensasi, gas yang tidak dapat dikondensasi, dan padatan arang.  Produk kemudian ditransportasikan ke dalam cyclone. Di dalam cyclone gas yang dapat dikondensasi akan dikondensasikan dan selanjutnya disebut sebagai bio oil, dan arang yang terbentuk dipisahkan. Sementara itu, gas yang tidak dapat terkondensasi (termasuk di dalamnya CO2, H2, dan CH4) akan dibakar dan dikembalikan ke reaktor untuk menjaga panas dari proses.
Dalam reaksi produksi bio oil tidak dihasilkan limbah atau zero waste (Gambar 35). 100 % bahan baku dikonversi menjadi bio oil dan arang, sedangkan gas yang tidak dapat dikondensasi dikembalikan ke dalam proses sebagai sumber energi. Tiga produk akhir yang dihasilkan dalam proses pirolisis yaitu : bio oil (60 – 75 wt %), arang (15 – 20 wt %), dan gas tidak terkondensasi (10 – 20 wt %). 

No comments