Breaking News

Emergency Preparedness by Households and Businesses, and Government Agencies

Research on household emergency preparedness has been conducted on a variety of hazard agents (especially earthquakes and hurricanes) and has yielded consistent findings across studies that have been summarized recently in the Protective Action Decision Model discussed in Chapter 4. Specifically, there is evidence that people have become increasingly aware of hazard mitigation and emergency preparedness actions they can take to protect themselves from environmental hazards (Lindell & Perry, 2000), but awareness of hazard adjustments does not imply accuracy of risk area residents’ beliefs about them. For example, Kunreuther, et al. (1978) found most non-policyholders who were aware earthquake insurance coverage was available could not provide an accurate estimate of its cost. A quarter of them were unable to give any estimate of the premium and most of the rest overestimated premium rates (see also Palm, Hodgson, Blanchard & Lyons, 1990).
Information derived from others is important because disasters occur so infrequently that it is difficult to learn by trial and error from personal experience. Researchers have examined two sources of social influence—peers (friends, relatives, neighbors, and coworkers) and the mass media—and found evidence that both types are associated with seismic adjustment. In particular, Mileti and O'Brien (1992) found adoption of seismic adjustments immediately after the Loma Prieta earthquake was significantly related to information quality (specificity, consistency, and source certainty) and information reinforcement (number of warnings). Similarly, Mileti and Fitzpatrick (1992) found significant effects for frequency of information receipt, message specificity, and source consistency in their study of the Parkfield prediction. More recently, Mileti and Darlington’s (1995, 1997) study of the effects of a hazard awareness campaign in the San Francisco Bay area found that respondents had engaged in a large number of seismic adjustments. Many of these were adopted before the campaign, but even more were undertaken in the following year. For example, emergency equipment storage rose from 50% to 81%, food and water stockpiling increased from 44% to 75%, and earthquake insurance purchases went from 27% to 40%. Mileti and Darlington (1997) reported adoption of these and other adjustments was positively correlated with the number of information channels and the presence of response guidance.
Emergency preparedness by businesses and government agencies suffers from many of the same limitations as was observed among households. Environmental hazards have low salience until an imminent threat arises, so emergency preparedness (and hazard mitigation) must compete with routine demands for space on the organizational agenda. This tendency is especially pronounced in organizations with limited financial assets. Generalizing from research in the broader literature on implementation indicates emergency preparedness programs are difficult to implement because emergency management tends to be viewed as an intractable problem; disaster reduction policies lack clear and measurable performance objectives; jurisdictions have insufficient resources; public and official support is minimal; and higher levels of government fail to provide sufficient emergency management guidance to local jurisdictions (Waugh, 1988).
A basic problem is that only a very few organizations are specifically evaluated on their preparedness to continue operations after disaster strikes—known as continuity of government (COG) and continuity of operations (COO). COG deals with the measures that assure government survives during and after a disaster—the survival of the basic elements of the executive, legislative, and judicial branches of government. COO addresses the measures ensuring organizations can deliver essential services during and following a disaster. In the case of government, this includes services such as tax assessment, official records, and human services. Few organizations prepare for the need to continue operations following disasters when they are called upon to meet “normal” demands (Anthony, l994; Cooke, l995; Wolensky & Wolensky, l990). As with households, disaster is only a vague threat that “ought to be addressed someday” when more resources are available.
Federal agencies and the federal government are required by statute, Presidential Decision Directive 67, and Executive Order 12656 to establish both continuity of government and continuity of operations plans. Federal Preparedness Circulars 65, 66 and 67 (www.app1.fema.gov/library/ libfpc_a.htm) lay out specific guidance for executives and emergency planners regarding plan development and content, training and exercise requirements and the acquisition of alternate facilities for continuity of operations. The US General Services Administration (2002) maintains a COO plan template (www.gsa.gov) for use by federal planners.
COG and COO plans both have nine major elements:
·         Concepts of operations are guided by the jurisdiction emergency plan.
·         Essential functions are identified and prioritized.
·         Unambiguous lines of succession for executives are specified.
·         Authority delegations and emergency decision-makers are predetermined.
·         EOCs and alternate work facilities are identified.
·         Interoperable communications are established.
·         Security is enhanced for personnel, facilities, and critical resources.
·         Vital records and databases are protected.
·         Schedules of training and exercises are maintained.
Comparatively little research attention has been devoted to COO preparedness among agencies lacking emergency response functions (Lindell & Meier, l994). Virtually all of the existing research on such agencies has been conducted on municipal and county organizations. Three factors have been consistently identified as correlates of COO preparedness, the first of which is organizational size (Quarantelli, 1981a; Quarantelli, 1984). The explanation for this correlation is larger organizations have more resources and are also likely to have a greater perceived need for strategic planning, (Gillespie & Streeter, 1987; Banerjee & Gillespie, l994; Lindell, et al., l996a). Second, the level of perceived risk among organizational and department managers is positively correlated with emergency preparedness (Mileti, l983, Mileti & Sorensen, l987; Drabek, l990). Finally, the extent to which managers report seeking information about environmental hazards is positively correlated with organizational preparedness (Lindell, et al., l996a; Barlow, l993; Stallings, l978). Perry and Lindell (l997c) assembled these factors into a model predicting earthquake preparedness by municipal and county departments. The three variables ultimately explained about two thirds of the variance in earthquake preparedness, with risk perception and self reported information-seeking behavior being the most important of the variables.
FEMA (no date, c) has developed an Emergency Management Guide for Business & Industry that outlines a COO planning process, identifies critical corporate emergency management functions, provides information about a variety of hazards, and lists sources to contact for further information. However, few research studies have examined the degree to which businesses have implemented the recommended activities and most of that research focused on limited samples of organizations. For example, Drabek (1991c, 1994a, 1994b, 1994c) studied tourist oriented firms, whereas Whitney, Dickerson, and Lindell (2001) studied hospitals, and Quarantelli, et al. (1979), Gabor (1981), and Lindell and Perry (1998) examined hazardous materials handlers. It is only more recently that researchers have conducted research on large, representative samples of business organizations (Dahlhamer & D’Souza, 1997; Mileti, et al., 1993; Nigg, 1995; Webb, Tierney & Dahlhamer, 2000, 2002).
The available research shows businesses display limited levels of COO preparedness. Drabek (1994a) found only 31% of the businesses in his survey of 185 tourist oriented firms had adequate levels of evacuation preparedness. Fewer than half of the businesses Mileti, et al. (1993) interviewed in the San Francisco Bay Area had developed emergency plans, trained employees, and conducted drills—despite this area’s experience in the Loma Prieta earthquake only a few years earlier. A study conducted in Memphis and Des Moines found low levels of business emergency preparedness—businesses in Memphis had implemented an average of only 4 out of 17 recommended preparedness activities and those in Des Moines had implemented an average of only 1.7 out of 13 measures (Dahlhamer & D'Souza, 1997).
As is the case for government agencies, the most consistent variable predicting business emergency preparedness is organizational size. The Quarantelli, et al. (1979) study of chemical companies reported larger companies had more extensive planning processes than smaller ones, a finding replicated in Lindell and Perry’s (1998) study of Los Angeles hazardous materials handling firms following the 1994 Northridge earthquake. Increasing size was also associated with evacuation planning in tourist oriented firms (Drabek, 1991c, 1994a, 1994b, 1994c) and Dahlhamer and D’Souza (1997) reported a positive correlation between size and preparedness.
As is the case for households, there does seem to be a positive relationship of disaster experience with business emergency preparedness (Dahlhamer & Reshaur, 1996; Dahlhamer & D’Souza, 1997; Webb, Tierney & Dahlhamer, 2000). In addition, other organizational characteristics such as business age, scope (local vs. national) and type have also been found to correlate with emergency preparedness, but the findings across studies are inconsistent.

No comments