Breaking News

Arabidopsis mutations of genes with microtubule-associated functions

Only mutants for which the genetic lesion has been reported are presented. This list contains sensu strictu MAP mutants, mutants of the tubulin folding machinery as well as further mutants for which distinctive microtubule-related phenotypes have been reported.


Mutant
Homology
AGI number
Main morphological and sub-cellular phenotype
Miscellaneous
Reference
angustifolia1
an1

similar to CtBP-Bars

- reduced trichome branching
- microtubule density
- elongated leaves
- microtubule orientation

(Kim et al., 2002) (Folkers et al., 2002)
arl2
(titan5, hallimasch)
ARF-like GTPase family, tubulin folding
- mutants arrest during embryogenesis

(Steinborn et al., 2002)
armadillo-repeat containing kinesin ark2
kinesin (plant-specific class)
- helical root growth

(Sakai et al., 2008)
atk1

kinesin 14 class
- atk1-1 mutant male meiotic spindles (metaphase1) were broad, unfocused and multi-axial

(Chen et al., 2002; Marcus et al., 2003)
atk5
kinesin 14 class

- plants appear morphologically normal
- involved in early mitotic spindle formation

(Ambrose et al., 2005; Ambrose and Cyr, 2007)
champignon
(titan1)
tubulin-folding co-factor D
- mutants arrest during embryogenesis

(Steinborn et al., 2002)
clasp-1
CLASP homologue
- plants are dwarfed
- less populated cortical microtubules array
- mitotic arrays are aberrant

(Ambrose et al., 2007; Kirik et al., 2007; Ambrose and Wasteneys, 2008)
eb1-a
eb1-b
eb1-c
End Binding1 homologue

- helical growth
- some alleles oryzalin hypersensitive
double and triple mutants reveal phenotype
(Bisgrove et al., 2008; Komaki et al., 2010)
endosperm
defective1
ede1
plant MAP

- endosperm does not cellularize
- cytokinesis defects in embryo

(Pignocchi et al., 2009)
fass
fs1
(ton2)
phosphatase PP2A regulatory subunit B”

- no division plane alignment
- lacks pre-prophase bands and cortical microtubules are misaligned

(Torres-Ruiz and Jurgens, 1994; Camilleri et al., 2002)
fragile fiber1
fra1
kinesin 4 class

- reduced mechanical strength of fibers
- abnormal orientation of cellulose microfibrils

(Zhong et al., 2002; Zhou et al., 2007)
fragile fiber2
fra2
(bot1, lue1, erh3)
katanin p60 subunit

- stunted growth
- ectopic root hairs
- delayed establishment of the cortical microtubule array

(Bichet et al., 2001; Burk et al., 2001; Webb et al., 2002; Bouquin et al., 2003)
gcp4
SPC98-like
- cytokinesis defects
- abnormal microtubule bundling
based on RNAi data
(Kong et al., 2010)
hinkel
(nack1)
kinesin 14 class

- cytokinesis defects
- phragmoplast microtubules do not re-organize

(Nishihama et al., 2002; Strompen et al., 2002)
ibo1
(nek6)
NIMA-related protein kinase
- epidermal outgrowth
GFP fusions label microtubules; interaction with ARK kinesins.
(Motose et al., 2008; Sakai et al., 2008)
kinesin-like protein
for actin-based chloroplast movement
kac1 and kac2
kinesin 14 class

- light-driven chloroplast movement defective
genes identical to KCA1 and KCA2 kinesins
(Vanstraelen et al., 2006; Suetsugu et al., 2010)
kiesel
kis
tubulin-folding co-factor A
- shape defect in trichomes
- cell defect in etiolated hypocotyls
- microtubule orientation abnormal

(Kirik et al., 2002a; Steinborn et al., 2002)
kinesin13a
kinesin 13 class

-  overbranched trichome
-  Golgi stacks clustered

(Lu et al., 2005)
map18
microtubule binding motif of MAP1B
- cell shape defects
- microtubule orientation defective
based on RNAi data
(Wang et al., 2007)
map70-5
plant MAP
- reduced inflorescence growth
- helical organ growth in overexpressors
based on RNAi data
(Korolev et al., 2007)
microtubule
organization1
mor1
(gem1)
XMAP215 / TOGp homologue

- helical organ growth, cell swelling, stunted organs and cytokinesis defects
- reduced microtubule length
temperature-sensitive alleles present
(Whittington et al., 2001; Twell et al., 2002)
morphogenesis of root-hairs
mrh2
(ark1)
kinesin (plant-specific class)
- split root hairs
- root hair microtubules with ectopic localization in endoplasm

(Jones et al., 2006; Yang et al., 2007; Sakai et al., 2008)
nedd1
WD40 repeat protein
- mitotic defects during pollen development

(Zeng et al., 2009)
pfifferling

tubulin-folding co-factor E

- mutants arrest during embryogenesis

(Steinborn et al., 2002)
phosducin 3
plp3
tubulin folding
- disoriented cell growth and cytokinesis defects
- disrupted microtubule arrays
includes RNAi data,  double knock-down reveals phenotype
(Castellano and Sablowski, 2008)
phragmoplast-
orienting
kinesin
pok1 and pok2
kinesin 12 class

- abnormal plane of cytokinesis
- misoriented mitotic arrays and misplaced cell walls
double mutants reveal phenotype
(Müller et al., 2006)
phragmoplast-associated kinesin
pakrp1 and  pakrp2
kinesin 12
class

- defects in the first post-meiotic division of the male gametophyte1
- phragmoplasts of the microspore become disorganized
double mutants reveal phenotype
(Lee et al., 2007)
pleiade
(map65-3)
PRC1 / Ase1 / MAP65  homologue

- cytokinesis defects in roots
- the cytokinetic phragmoplast is distorted

(Müller et al., 2002; Müller et al., 2004; Caillaud et al., 2008)
porcino
por
tubulin-folding co-factor C
- mutants arrest early during embryogenesis
- strong mutants have no detectable microtubules

(Kirik et al., 2002b; Steinborn et al., 2002)
propyzamide-
hypersensitive1
phs1
similar to MAPK phosphatase

- helical growth
- cortical microtubules less ordered and more fragmented

dominant-negative allele, knock-out is embryo-lethal
(Naoi and Hashimoto, 2004)
prefoldin6
prefoldin homologue

- shorter roots and etiolated hypocotyls

(Gu et al., 2008)
ran-gap mutants
rg1
rg2
RanGAP homologue

- oblique cell walls in roots
- cell wall stubs
based on a combination of RNAi with T-DNA insertion

(Xu et al., 2008)
root swelling7
rsw7
kinesin 5 class

- swollen roots
- cortical and spindle microtubules misoriented
temperature-sensitive allele
(Bannigan et al., 2007)
rop-interacting1
ric1
CRIB motif

- misformed leaf epidermal cells
- fewer, shorter and less organized microtubules

(Fu et al., 2005)
runkel
ruk
(emb3013)
kinase domain
and HEAT repeats

- abnormal phragmoplast organization and arrested cell plate expansion

(Krupnova et al., 2009)
spira1-like 2
spira1-like 3
spira1-like 4
plant MAP
- enhanced helical organ growth when analyzed in spr1 background

(Nakajima et al., 2006)
spiral1
spr1
(sku6)
plant MAP

- helical growth and swollen cells
- helical microtubule arrays

(Furutani et al., 2000; Nakajima et al., 2004; Sedbrook et al., 2004)
spiral3
spr3
GCP2 homologue
with grip motif
(SPC98-like)
- right-handed helical growth
through recessive missense mutation
- knock-outs have gametophytic defects

(Nakamura and Hashimoto, 2009)
stud1
std1
(tetraspore, nack2)
kinesin 14 class

- meiosis defects lead to abnormal pollen shape
- male meiotic microtubule array fails to form

(Hülskamp et al., 1997; Spielman et al., 1997; Yang et al., 2003)
tangled1
tan1
plant MAP

- abnormal plane of cytokinesis
- PPB alignment and phragmoplast attraction impaired

(Walker et al., 2007)
tonneau1
ton1
LisH domain
TOF motif
PLL motif

- no division plane alignment
- no PPB formed

(Traas et al., 1995; Nacry et al., 1998; Azimzadeh et al., 2008)
tortifolia1
tor1
(spr2, cn)
plant MAP
- helical organ growth
- cortical microtubules misaligned and later helical
- altered microtubule dynamics 

(Bürger, 1971; Buschmann et al., 2004; Shoji et al., 2004; Yao et al., 2008)
tortifolia1-like
(spr2-like)
plant MAP
- enhances twisting in tor1 background

(Yao et al., 2008)
tua2
tua3
tua4
tua5
tua6
(lefty1+2, tor2)
a-tubulin
GTP binding

- helical organ twisting and helical microtubule arrays in dominant-negative mutants
- altered microtubule dynamics in helical growth background
- stunted growth in a-tubulin antisense plants
tua6cys213 is a temperature sensitive allele;
antisense data
available.
(Bao et al., 2001; Thitamadee et al., 2002; Ishida and Hashimoto, 2007; Ishida et al., 2007; Buschmann et al., 2009)
tub1
tub2
tub3
tub4

b-tubulin GTPase

- helical organ twisting
- helical microtubule arrays
dominant-negative tubulin mutations

(Ishida et al., 2007)
tug1
tug2
g-tubulin

- gametophytic or seedling lethal
- aberrant cytokinetic microtubule arrays
double mutants reveal phenotype, RNAi data also available
(Binarova et al., 2006; Pastuglia et al., 2006)
ungud9
(air9)
plant MAP
- gametophyte defective
contains a large deletion
(Lalanne et al., 2004)
wave-dampened2
wvd2
TPX2 domain homology
- helical growth and impaired root waving
- helical microtubule arrays
overexpression
and RNAi
(Yuen et al., 2003; Perrin et al., 2007)
wave-dampened-like
wdl1
TPX2 domain homology
- helical growth and impaired root waving
overexpression
and RNAi
(Yuen et al., 2003; Perrin et al., 2007)
zwichel
zwi
(kcbp)
Ca2+ / calmodulin –regulated class 14 kinesin

- fewer trichome branches and impaired branch elongation
zwi mutants may be hypomorphic
(Oppenheimer et al., 1997; Krishnakumar and Oppenheimer, 1999; Reddy et al., 2004)


References
Ambrose, J.C., and Cyr, R. (2007). The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19, 226-236.
Ambrose, J.C., and Wasteneys, G.O. (2008). CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19, 4730-4737.
Ambrose, J.C., Li, W., Marcus, A., Ma, H., and Cyr, R. (2005). A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584-1592.
Ambrose, J.C., Shoji, T., Kotzer, A.M., Pighin, J.A., and Wasteneys, G.O. (2007). The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19, 2763-2775.
Azimzadeh, J., Nacry, P., Christodoulidou, A., Drevensek, S., Camilleri, C., Amiour, N., Parcy, F., Pastuglia, M., and Bouchez, D. (2008). Arabidopsis TONNEAU1 Proteins Are Essential for Preprophase Band Formation and Interact with Centrin. Plant Cell 20, 2146-2159.
Bannigan, A., Scheible, W.R., Lukowitz, W., Fagerstrom, C., Wadsworth, P., Somerville, C., and Baskin, T.I. (2007). A conserved role for kinesin-5 in plant mitosis. J. Cell Sci. 120, 2819-2827.
Bao, Y., Kost, B., and Chua, N.H. (2001). Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J. 28, 145-157.
Bichet, A., Desnos, T., Turner, S., Grandjean, O., and Hofte, H. (2001). BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 25, 137-148.
Binarova, P., Cenklova, V., Prochazkova, J., Doskocilova, A., Volc, J., Vrlik, M., and Bogre, L. (2006). Gamma-tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18, 1199-1212.
Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T., and Kropf, D.L. (2008). The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20, 396-410.
Bouquin, T., Mattsson, O., Naested, H., Foster, R., and Mundy, J. (2003). The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J. Cell Sci. 116, 791-801.
Bürger, D. (1971). Die morphologischen Mutanten des Göttinger Arabidopsis-Sortiments, einschließlich der Mutanten mit abweichender Samenfarbe. Arabidopsis Inf. Serv. 8, 36-42.
Burk, D.H., Liu, B., Zhong, R., Morrison, W.H., and Ye, Z.H. (2001). A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807-827.
Buschmann, H., Hauptmann, M., Niessing, D., Lloyd, C.W., and Schäffner, A.R. (2009). Helical Growth of the Arabidopsis Mutant tortifolia2 Does Not Depend on Cell Division Patterns but Involves Handed Twisting of Isolated Cells. Plant Cell 21, 2090-2106.
Buschmann, H., Fabri, C.O., Hauptmann, M., Hutzler, P., Laux, T., Lloyd, C.W., and Schäffner, A.R. (2004). Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr. Biol. 14, 1515-1521.
Caillaud, M.C., Lecomte, P., Jammes, F., Quentin, M., Pagnotta, S., Andrio, E., de Almeida Engler, J., Marfaing, N., Gounon, P., Abad, P., and Favery, B. (2008). MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20, 423-437.
Camilleri, C., Azimzadeh, J., Pastuglia, M., Bellini, C., Grandjean, O., and Bouchez, D. (2002). The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14, 833-845.
Castellano, M.M., and Sablowski, R. (2008). Phosducin-like protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. Plant Cell 20, 969-981.
Chen, C., Marcus, A., Li, W., Hu, Y., Calzada, J.P., Grossniklaus, U., Cyr, R.J., and Ma, H. (2002). The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129, 2401-2409.
Folkers, U., Kirik, V., Schobinger, U., Falk, S., Krishnakumar, S., Pollock, M.A., Oppenheimer, D.G., Day, I., Reddy, A.S., Jurgens, G., and Hulskamp, M. (2002). The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. Embo J. 21, 1280-1288.
Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., and Yang, Z. (2005). Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687-700.
Furutani, I., Watanabe, Y., Prieto, R., Masukawa, M., Suzuki, K., Naoi, K., Thitamadee, S., Shikanai, T., and Hashimoto, T. (2000). The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127, 4443-4453.
Gu, Y., Deng, Z., Paredez, A.R., Debolt, S., Wang, Z.Y., and Somerville, C. (2008). Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc. Natl. Acad. Sci. USA.
Hülskamp, M., Parekh, N.S., Grini, P., Schneitz, K., Zimmermann, I., Lolle, S.J., and Pruitt, R.E. (1997). The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev. Biol. 187, 114-124.
Ishida, T., and Hashimoto, T. (2007). An Arabidopsis thaliana tubulin mutant with conditional root-skewing phenotype. J. Plant Res. 120, 635-640.
Ishida, T., Kaneko, Y., Iwano, M., and Hashimoto, T. (2007). Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 8544-8549.
Jones, M.A., Raymond, M.J., and Smirnoff, N. (2006). Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J. 45, 83-100.
Kim, G.T., Shoda, K., Tsuge, T., Cho, K.H., Uchimiya, H., Yokoyama, R., Nishitani, K., and Tsukaya, H. (2002). The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. Embo J. 21, 1267-1279.
Kirik, V., Herrmann, U., Parupalli, C., Sedbrook, J.C., Ehrhardt, D.W., and Hulskamp, M. (2007). CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J. Cell Sci. 120, 4416-4425.
Kirik, V., Grini, P.E., Mathur, J., Klinkhammer, I., Adler, K., Bechtold, N., Herzog, M., Bonneville, J.M., and Hulskamp, M. (2002a). The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance. Plant Cell 14, 2265-2276.
Kirik, V., Mathur, J., Grini, P.E., Klinkhammer, I., Adler, K., Bechtold, N., Herzog, M., Bonneville, J.M., and Hulskamp, M. (2002b). Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana. Curr. Biol. 12, 1519-1523.
Komaki, S., Abe, T., Coutuer, S., Inze, D., Russinova, E., and Hashimoto, T. (2010). Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J. Cell Sci. 123, 451-459.
Kong, Z., Hotta, T., Lee, Y.R., Horio, T., and Liu, B. (2010). The g-Tubulin Complex Protein GCP4 Is Required for Organizing Functional Microtubule Arrays in Arabidopsis thaliana. Plant Cell 22, 191-204.
Korolev, A.V., Buschmann, H., Doonan, J.H., and Lloyd, C.W. (2007). AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J. Cell Sci. 120, 2241-2247.
Krishnakumar, S., and Oppenheimer, D.G. (1999). Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation and pollen tube growth. Development 126, 3079-3088.
Krupnova, T., Sasabe, M., Ghebreghiorghis, L., Gruber, C.W., Hamada, T., Dehmel, V., Strompen, G., Stierhof, Y.D., Lukowitz, W., Kemmerling, B., Machida, Y., Hashimoto, T., Mayer, U., and Jurgens, G. (2009). Microtubule-Associated Kinase-like Protein RUNKEL for Cell Plate Expansion in Arabidopsis Cytokinesis. Curr. Biol. 19, 6 pages.
Lalanne, E., Michaelidis, C., Moore, J.M., Gagliano, W., Johnson, A., Patel, R., Howden, R., Vielle-Calzada, J.P., Grossniklaus, U., and Twell, D. (2004). Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167, 1975-1986.
Lee, Y.R., Li, Y., and Liu, B. (2007). Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell 19, 2595-2605.
Lu, L., Lee, Y.R., Pan, R., Maloof, J.N., and Liu, B. (2005). An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16, 811-823.
Marcus, A.I., Li, W., Ma, H., and Cyr, R.J. (2003). A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol. Biol. Cell 14, 1717-1726.
Motose, H., Tominaga, R., Wada, T., Sugiyama, M., and Watanabe, Y. (2008). A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant J. 54, 829-844.
Müller, S., Han, S., and Smith, L.G. (2006). Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr. Biol. 16, 888-894.
Müller, S., Fuchs, E., Ovecka, M., Wysocka-Diller, J., Benfey, P.N., and Hauser, M.T. (2002). Two new loci, PLEIADE and HYADE, implicate organ-specific regulation of cytokinesis in Arabidopsis. Plant Physiol. 130, 312-324.
Müller, S., Smertenko, A., Wagner, V., Heinrich, M., Hussey, P.J., and Hauser, M.T. (2004). The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412-417.
Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez, D. (1998). Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149, 641-650.
Nakajima, K., Kawamura, T., and Hashimoto, T. (2006). Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol. 47, 513-522.
Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H., and Hashimoto, T. (2004). SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16, 1178-1190.
Nakamura, M., and Hashimoto, T. (2009). A mutation in the Arabidopsis g-tubulin-containing complex causes helical growth and abnormal microtubule branching. J. Cell Sci. 122, 2208-2217.
Naoi, K., and Hashimoto, T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16, 1841-1853.
Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., Irie, K., Ito, M., Terada, M., Banno, H., Yamazaki, Y., and Machida, Y. (2002). Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87-99.
Oppenheimer, D.G., Pollock, M.A., Vacik, J., Szymanski, D.B., Ericson, B., Feldmann, K., and Marks, M.D. (1997). Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc. Natl. Acad. Sci. USA 94, 6261-6266.
Pastuglia, M., Azimzadeh, J., Goussot, M., Camilleri, C., Belcram, K., Evrard, J.L., Schmit, A.C., Guerche, P., and Bouchez, D. (2006). Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18, 1412-1425.
Perrin, R.M., Wang, Y., Yuen, C.Y., Will, J., and Masson, P.H. (2007). WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J. 49, 961-971.
Pignocchi, C., Minns, G.E., Nesi, N., Koumproglou, R., Kitsios, G., Benning, C., Lloyd, C.W., Doonan, J.H., and Hills, M.J. (2009). ENDOSPERM DEFECTIVE1 Is a Novel Microtubule-Associated Protein Essential for Seed Development in Arabidopsis. Plant Cell.
Reddy, V.S., Day, I.S., Thomas, T., and Reddy, A.S. (2004). KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16, 185-200.
Sakai, T., Honing, H., Nishioka, M., Uehara, Y., Takahashi, M., Fujisawa, N., Saji, K., Seki, M., Shinozaki, K., Jones, M.A., Smirnoff, N., Okada, K., and Wasteneys, G.O. (2008). Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J. 53, 157-171.
Sedbrook, J.C., Ehrhardt, D.W., Fisher, S.E., Scheible, W.R., and Somerville, C.R. (2004). The Arabidopsis SKU6/SPIRAL1 Gene Encodes a Plus End-Localized Microtubule-Interacting Protein Involved in Directional Cell Expansion. Plant Cell 16, 1506-1520.
Shoji, T., Narita, N.N., Hayashi, K., Asada, J., Hamada, T., Sonobe, S., Nakajima, K., and Hashimoto, T. (2004). Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol. 136, 3933-3944.
Spielman, M., Preuss, D., Li, F.L., Browne, W.E., Scott, R.J., and Dickinson, H.G. (1997). TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124, 2645-2657.
Steinborn, K., Maulbetsch, C., Priester, B., Trautmann, S., Pacher, T., Geiges, B., Kuttner, F., Lepiniec, L., Stierhof, Y.D., Schwarz, H., Jurgens, G., and Mayer, U. (2002). The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 16, 959-971.
Strompen, G., El Kasmi, F., Richter, S., Lukowitz, W., Assaad, F.F., Jurgens, G., and Mayer, U. (2002). The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr. Biol. 12, 153-158.
Suetsugu, N., Yamada, N., Kagawa, T., Yonekura, H., Uyeda, T.Q., Kadota, A., and Wada, M. (2010). Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. PNAS USA 107, 1-6.
Thitamadee, S., Tuchihara, K., and Hashimoto, T. (2002). Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417, 193-196.
Torres-Ruiz, R.A., and Jurgens, G. (1994). Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120, 2967-2978.
Traas, J., Bellini, C., Nacry, P., Kronenberger, J., Bouchez, D., and Caboche, M. (1995). Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375, 676–677.
Twell, D., Park, S.K., Hawkins, T.J., Schubert, D., Schmidt, R., Smertenko, A., and Hussey, P.J. (2002). MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat. Cell Biol. 4, 711-714.
Vanstraelen, M., Van Damme, D., De Rycke, R., Mylle, E., Inze, D., and Geelen, D. (2006). Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr. Biol. 16, 308-314.
Walker, K.L., Muller, S., Moss, D., Ehrhardt, D.W., and Smith, L.G. (2007). Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827-1836.
Wang, X., Zhu, L., Liu, B., Wang, C., Jin, L., Zhao, Q., and Yuan, M. (2007). Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19, 877-889.
Webb, M., Jouannic, S., Foreman, J., Linstead, P., and Dolan, L. (2002). Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3 - a katanin-p60 protein. Development 129, 123-131.
Whittington, A.T., Vugrek, O., Wei, K.J., Hasenbein, N.G., Sugimoto, K., Rashbrooke, M.C., and Wasteneys, G.O. (2001). MOR1 is essential for organizing cortical microtubules in plants. Nature 411, 610-613.
Xu, X.M., Zhao, Q., Rodrigo-Peiris, T., Brkljacic, J., He, C.S., Muller, S., and Meier, I. (2008). RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc. Natl. Acad. Sci. USA 105, 18637-18642.
Yang, C.Y., Spielman, M., Coles, J.P., Li, Y., Ghelani, S., Bourdon, V., Brown, R.C., Lemmon, B.E., Scott, R.J., and Dickinson, H.G. (2003). TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J. 34, 229-240.
Yang, G., Gao, P., Zhang, H., Huang, S., and Zheng, Z.L. (2007). A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS ONE 2, e1074.
Yao, M., Wakamatsu, Y., Itoh, T.J., Shoji, T., and Hashimoto, T. (2008). Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J. Cell Sci. 121, 2372-2381.
Yuen, C.Y., Pearlman, R.S., Silo-Suh, L., Hilson, P., Carroll, K.L., and Masson, P.H. (2003). WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol. 131, 493-506.
Zeng, C.J., Lee, Y.R., and Liu, B. (2009). The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21, 1129-1140.
Zhong, R., Burk, D.H., Morrison, W.H., 3rd, and Ye, Z.H. (2002). A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14, 3101-3117.
Zhou, J., Qiu, J., and Ye, Z.-H. (2007). Alteration in secondary wall deposition by overexpression of the fragile fiber1 kinesin-like protein in Arabidopsis. J. Integr. Plant Biol. 49, 1235–1243.


No comments