Arabidopsis mutations of genes with microtubule-associated functions
Only mutants for
which the genetic lesion has been reported are presented. This list contains sensu strictu MAP mutants, mutants of
the tubulin folding machinery as well as further mutants for which distinctive
microtubule-related phenotypes have been reported.
Mutant
|
Homology
|
AGI number
|
Main morphological
and sub-cellular phenotype
|
Miscellaneous
|
Reference
|
angustifolia1
an1
|
similar to CtBP-Bars
|
|
- reduced trichome branching
- microtubule density
- elongated leaves
- microtubule orientation
|
|
(Kim et al., 2002) (Folkers et al., 2002)
|
arl2
(titan5, hallimasch)
|
ARF-like GTPase
family, tubulin folding
|
- mutants arrest during embryogenesis
|
|
(Steinborn et al., 2002)
|
|
armadillo-repeat containing kinesin ark2
|
kinesin
(plant-specific class)
|
- helical root growth
|
|
(Sakai et al., 2008)
|
|
atk1
|
kinesin 14 class
|
- atk1-1 mutant
male meiotic spindles (metaphase1) were broad, unfocused and multi-axial
|
|
(Chen et al., 2002; Marcus et al., 2003)
|
|
atk5
|
kinesin 14 class
|
|
- plants appear morphologically normal
- involved in early mitotic spindle formation
|
|
(Ambrose et al., 2005; Ambrose and Cyr, 2007)
|
champignon
(titan1)
|
tubulin-folding
co-factor D
|
- mutants arrest during embryogenesis
|
|
(Steinborn et al., 2002)
|
|
clasp-1
|
CLASP homologue
|
- plants are dwarfed
- less populated cortical microtubules array
- mitotic arrays are aberrant
|
|
(Ambrose et al., 2007; Kirik et al., 2007; Ambrose and
Wasteneys, 2008)
|
|
eb1-a
eb1-b
eb1-c
|
End Binding1
homologue
|
|
- helical growth
- some alleles oryzalin hypersensitive
|
double and triple
mutants reveal phenotype
|
(Bisgrove et al., 2008; Komaki et al.,
2010)
|
endosperm
defective1
ede1
|
plant MAP
|
|
- endosperm does not cellularize
- cytokinesis defects in embryo
|
|
(Pignocchi et al., 2009)
|
fass
fs1
(ton2)
|
phosphatase PP2A
regulatory subunit B”
|
|
- no division plane alignment
- lacks pre-prophase bands and cortical microtubules are
misaligned
|
|
(Torres-Ruiz and Jurgens, 1994; Camilleri et al., 2002)
|
fragile fiber1
fra1
|
kinesin 4 class
|
|
- reduced mechanical strength of fibers
- abnormal orientation of cellulose microfibrils
|
|
(Zhong et al., 2002; Zhou et al., 2007)
|
fragile fiber2
fra2
(bot1, lue1, erh3)
|
katanin p60 subunit
|
|
- stunted growth
- ectopic root hairs
- delayed establishment of the cortical microtubule array
|
|
(Bichet et al., 2001; Burk et al., 2001;
Webb et al., 2002; Bouquin et al., 2003)
|
gcp4
|
SPC98-like
|
- cytokinesis defects
- abnormal microtubule bundling
|
based on RNAi data
|
(Kong et al., 2010)
|
|
hinkel
(nack1)
|
kinesin 14 class
|
|
- cytokinesis defects
- phragmoplast microtubules do not re-organize
|
|
(Nishihama et al., 2002; Strompen et al., 2002)
|
ibo1
(nek6)
|
NIMA-related protein
kinase
|
- epidermal outgrowth
|
GFP fusions label microtubules;
interaction with ARK
kinesins.
|
(Motose et al., 2008; Sakai et al., 2008)
|
|
kinesin-like protein
for actin-based chloroplast movement
kac1 and kac2
|
kinesin 14 class
|
|
- light-driven chloroplast movement defective
|
genes identical to
KCA1 and KCA2 kinesins
|
(Vanstraelen et al., 2006; Suetsugu et al.,
2010)
|
kiesel
kis
|
tubulin-folding
co-factor A
|
- shape defect in trichomes
- cell defect in etiolated hypocotyls
- microtubule orientation abnormal
|
|
(Kirik et al., 2002a; Steinborn et al., 2002)
|
|
kinesin13a
|
kinesin 13 class
|
|
- overbranched
trichome
- Golgi stacks
clustered
|
|
(Lu et al., 2005)
|
map18
|
microtubule binding
motif of MAP1B
|
- cell shape defects
- microtubule orientation defective
|
based on RNAi data
|
(Wang et al., 2007)
|
|
map70-5
|
plant MAP
|
- reduced inflorescence growth
- helical organ growth in overexpressors
|
based on RNAi data
|
(Korolev et al., 2007)
|
|
microtubule
organization1
mor1
(gem1)
|
XMAP215 / TOGp
homologue
|
|
- helical organ growth, cell swelling, stunted organs and
cytokinesis defects
- reduced microtubule length
|
temperature-sensitive
alleles present
|
(Whittington et al., 2001; Twell et al., 2002)
|
morphogenesis of root-hairs
mrh2
(ark1)
|
kinesin
(plant-specific class)
|
- split root hairs
- root hair microtubules with ectopic localization in
endoplasm
|
|
(Jones et al., 2006; Yang et al., 2007; Sakai et al.,
2008)
|
|
nedd1
|
WD40 repeat protein
|
- mitotic defects during pollen development
|
|
(Zeng et al., 2009)
|
|
pfifferling
|
tubulin-folding
co-factor E
|
|
- mutants arrest during embryogenesis
|
|
(Steinborn et al., 2002)
|
phosducin 3
plp3
|
tubulin folding
|
- disoriented cell growth and cytokinesis defects
- disrupted microtubule arrays
|
includes RNAi
data, double knock-down reveals
phenotype
|
(Castellano and Sablowski, 2008)
|
|
phragmoplast-
orienting
kinesin
pok1 and pok2
|
kinesin 12 class
|
|
- abnormal plane of cytokinesis
- misoriented mitotic arrays and misplaced cell walls
|
double mutants
reveal phenotype
|
(Müller et al., 2006)
|
phragmoplast-associated kinesin
pakrp1 and pakrp2
|
kinesin 12
class
|
|
- defects in the first post-meiotic division of the male gametophyte1
- phragmoplasts of the microspore become disorganized
|
double mutants
reveal phenotype
|
(Lee et al., 2007)
|
pleiade
(map65-3)
|
PRC1 / Ase1 / MAP65 homologue
|
|
- cytokinesis defects in roots
- the cytokinetic phragmoplast is distorted
|
|
(Müller et al., 2002; Müller et al., 2004;
Caillaud et al., 2008)
|
porcino
por
|
tubulin-folding co-factor C
|
- mutants arrest early during embryogenesis
- strong mutants have no detectable microtubules
|
|
(Kirik et al., 2002b; Steinborn et al., 2002)
|
|
propyzamide-
hypersensitive1
phs1
|
similar to MAPK
phosphatase
|
|
- helical growth
- cortical microtubules less ordered and more fragmented
|
dominant-negative
allele, knock-out is embryo-lethal
|
(Naoi and Hashimoto, 2004)
|
prefoldin6
|
prefoldin homologue
|
|
- shorter roots and etiolated hypocotyls
|
|
(Gu et al., 2008)
|
ran-gap mutants
rg1
rg2
|
RanGAP homologue
|
|
- oblique cell walls in roots
- cell wall stubs
|
based on a
combination of RNAi with T-DNA insertion
|
(Xu et al., 2008)
|
root swelling7
rsw7
|
kinesin 5 class
|
|
- swollen roots
- cortical and spindle microtubules misoriented
|
temperature-sensitive
allele
|
(Bannigan et al., 2007)
|
rop-interacting1
ric1
|
CRIB motif
|
|
- misformed leaf epidermal cells
- fewer, shorter and less organized microtubules
|
|
(Fu et al., 2005)
|
runkel
ruk
(emb3013)
|
kinase domain
and HEAT repeats
|
|
- abnormal phragmoplast
organization and arrested cell plate expansion
|
|
(Krupnova et al., 2009)
|
spira1-like 2
spira1-like 3
spira1-like 4
|
plant MAP
|
- enhanced helical organ growth when analyzed in spr1 background
|
|
(Nakajima et al., 2006)
|
|
spiral1
spr1
(sku6)
|
plant MAP
|
|
- helical growth and swollen cells
- helical microtubule arrays
|
|
(Furutani et al., 2000; Nakajima et al., 2004; Sedbrook et
al., 2004)
|
spiral3
spr3
|
GCP2 homologue
with grip motif
(SPC98-like)
|
- right-handed helical growth
through recessive missense mutation
- knock-outs have gametophytic defects
|
|
(Nakamura and Hashimoto, 2009)
|
|
stud1
std1
(tetraspore, nack2)
|
kinesin 14 class
|
|
- meiosis defects lead to abnormal pollen shape
- male meiotic microtubule array fails to form
|
|
(Hülskamp et al., 1997; Spielman et al., 1997; Yang et
al., 2003)
|
tangled1
tan1
|
plant MAP
|
|
- abnormal plane of cytokinesis
- PPB alignment and phragmoplast attraction impaired
|
|
(Walker et al., 2007)
|
tonneau1
ton1
|
LisH domain
TOF motif
PLL motif
|
|
- no division plane alignment
- no PPB formed
|
|
(Traas et al., 1995; Nacry et al., 1998; Azimzadeh et al.,
2008)
|
tortifolia1
tor1
(spr2, cn)
|
plant MAP
|
- helical organ growth
- cortical microtubules misaligned and later helical
- altered microtubule dynamics
|
|
(Bürger, 1971; Buschmann et al., 2004; Shoji et al., 2004;
Yao et al., 2008)
|
|
tortifolia1-like
(spr2-like)
|
plant MAP
|
- enhances twisting in tor1
background
|
|
(Yao et al., 2008)
|
|
tua2
tua3
tua4
tua5
tua6
(lefty1+2, tor2)
|
a-tubulin
GTP binding
|
|
- helical organ twisting and helical microtubule arrays in
dominant-negative mutants
- altered microtubule dynamics in helical growth
background
- stunted growth in a-tubulin antisense
plants
|
tua6cys213 is a temperature sensitive allele;
antisense data
available.
|
(Bao et al., 2001; Thitamadee et al., 2002; Ishida and
Hashimoto, 2007; Ishida et al., 2007; Buschmann et al., 2009)
|
tub1
tub2
tub3
tub4
|
b-tubulin GTPase
|
|
- helical organ twisting
- helical microtubule arrays
|
dominant-negative
tubulin mutations
|
(Ishida et al., 2007)
|
tug1
tug2
|
g-tubulin
|
|
- gametophytic or seedling lethal
- aberrant cytokinetic microtubule arrays
|
double mutants
reveal phenotype, RNAi data also available
|
(Binarova et al., 2006; Pastuglia
et al., 2006)
|
ungud9
(air9)
|
plant MAP
|
- gametophyte defective
|
contains a large
deletion
|
(Lalanne et al., 2004)
|
|
wave-dampened2
wvd2
|
TPX2 domain homology
|
- helical growth and impaired root waving
- helical microtubule arrays
|
overexpression
and RNAi
|
(Yuen et al., 2003; Perrin et al., 2007)
|
|
wave-dampened-like
wdl1
|
TPX2 domain homology
|
- helical growth and impaired root waving
|
overexpression
and RNAi
|
(Yuen et al., 2003; Perrin et al., 2007)
|
|
zwichel
zwi
(kcbp)
|
Ca2+ / calmodulin –regulated class 14 kinesin
|
|
- fewer trichome
branches and impaired branch elongation
|
zwi mutants may be
hypomorphic
|
(Oppenheimer et al., 1997; Krishnakumar and
Oppenheimer, 1999; Reddy et al., 2004)
|
References
Ambrose,
J.C., and Cyr, R. (2007). The
kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19, 226-236.
Ambrose, J.C., and Wasteneys, G.O. (2008). CLASP modulates microtubule-cortex interaction during
self-organization of acentrosomal microtubules. Mol Biol Cell 19, 4730-4737.
Ambrose, J.C., Li, W., Marcus, A., Ma, H., and Cyr, R. (2005). A minus-end-directed kinesin with plus-end tracking
protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584-1592.
Ambrose, J.C., Shoji, T., Kotzer, A.M., Pighin, J.A., and
Wasteneys, G.O. (2007). The Arabidopsis CLASP gene encodes a
microtubule-associated protein involved in cell expansion and division. Plant
Cell 19, 2763-2775.
Azimzadeh, J., Nacry, P., Christodoulidou, A., Drevensek, S.,
Camilleri, C., Amiour, N., Parcy, F., Pastuglia, M., and Bouchez, D. (2008). Arabidopsis
TONNEAU1 Proteins Are Essential for Preprophase Band Formation and Interact
with Centrin. Plant Cell 20, 2146-2159.
Bannigan, A., Scheible, W.R., Lukowitz, W., Fagerstrom, C.,
Wadsworth, P., Somerville, C., and Baskin, T.I. (2007). A conserved role for kinesin-5 in plant mitosis. J. Cell
Sci. 120, 2819-2827.
Bao, Y., Kost, B., and Chua, N.H. (2001). Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically
affects root growth and morphology, root hair development and root
gravitropism. Plant J. 28, 145-157.
Bichet, A., Desnos, T., Turner, S., Grandjean, O., and Hofte, H. (2001). BOTERO1 is required for normal orientation of
cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 25, 137-148.
Binarova, P., Cenklova, V., Prochazkova, J., Doskocilova, A.,
Volc, J., Vrlik, M., and Bogre, L.
(2006). Gamma-tubulin is essential for acentrosomal microtubule nucleation and
coordination of late mitotic events in Arabidopsis.
Plant Cell 18, 1199-1212.
Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T., and Kropf, D.L. (2008). The microtubule plus-end binding protein EB1
functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20, 396-410.
Bouquin, T., Mattsson, O., Naested, H., Foster, R., and Mundy, J. (2003). The Arabidopsis
lue1 mutant defines a katanin p60 ortholog involved in hormonal control of
microtubule orientation during cell growth. J. Cell Sci. 116, 791-801.
Bürger, D. (1971). Die morphologischen Mutanten des Göttinger Arabidopsis-Sortiments,
einschließlich der Mutanten mit abweichender Samenfarbe. Arabidopsis Inf. Serv. 8,
36-42.
Burk, D.H., Liu, B., Zhong, R., Morrison, W.H., and Ye, Z.H. (2001). A katanin-like protein regulates normal cell wall
biosynthesis and cell elongation. Plant Cell 13, 807-827.
Buschmann, H., Hauptmann, M., Niessing, D., Lloyd, C.W., and
Schäffner, A.R. (2009). Helical Growth of the Arabidopsis Mutant tortifolia2 Does Not Depend on Cell Division Patterns but Involves
Handed Twisting of Isolated Cells. Plant Cell 21, 2090-2106.
Buschmann, H., Fabri, C.O., Hauptmann, M., Hutzler, P., Laux, T.,
Lloyd, C.W., and Schäffner, A.R.
(2004). Helical growth of the Arabidopsis
mutant tortifolia1 reveals a
plant-specific microtubule-associated protein. Curr. Biol. 14, 1515-1521.
Caillaud, M.C., Lecomte, P., Jammes, F., Quentin, M., Pagnotta,
S., Andrio, E., de Almeida Engler, J., Marfaing, N., Gounon, P., Abad, P., and
Favery, B. (2008). MAP65-3
microtubule-associated protein is essential for nematode-induced giant cell
ontogenesis in Arabidopsis. Plant
Cell 20, 423-437.
Camilleri, C., Azimzadeh, J., Pastuglia, M., Bellini, C.,
Grandjean, O., and Bouchez, D.
(2002). The Arabidopsis TONNEAU2 gene
encodes a putative novel protein phosphatase 2A regulatory subunit essential
for the control of the cortical cytoskeleton. Plant Cell 14, 833-845.
Castellano, M.M., and Sablowski, R. (2008). Phosducin-like protein 3 is required for
microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. Plant Cell 20, 969-981.
Chen, C., Marcus, A., Li, W., Hu, Y., Calzada, J.P., Grossniklaus,
U., Cyr, R.J., and Ma, H. (2002). The Arabidopsis ATK1 gene is required for
spindle morphogenesis in male meiosis. Development 129, 2401-2409.
Folkers, U., Kirik, V., Schobinger, U., Falk, S., Krishnakumar,
S., Pollock, M.A., Oppenheimer, D.G., Day, I., Reddy, A.S., Jurgens, G., and
Hulskamp, M. (2002). The cell morphogenesis
gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the
control of the microtubule cytoskeleton. Embo J. 21, 1280-1288.
Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., and Yang, Z. (2005). Arabidopsis
interdigitating cell growth requires two antagonistic pathways with opposing
action on cell morphogenesis. Cell 120, 687-700.
Furutani, I., Watanabe, Y., Prieto, R., Masukawa, M., Suzuki, K.,
Naoi, K., Thitamadee, S., Shikanai, T., and Hashimoto, T. (2000). The SPIRAL genes are required for directional
control of cell elongation in Arabidopsis
thaliana. Development 127, 4443-4453.
Gu, Y., Deng, Z., Paredez, A.R., Debolt, S., Wang, Z.Y., and
Somerville, C. (2008). Prefoldin 6 is required
for normal microtubule dynamics and organization in Arabidopsis. Proc. Natl. Acad. Sci. USA.
Hülskamp, M., Parekh, N.S., Grini, P., Schneitz, K., Zimmermann,
I., Lolle, S.J., and Pruitt, R.E.
(1997). The STUD gene is required for
male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev. Biol. 187, 114-124.
Ishida, T., and Hashimoto, T. (2007). An Arabidopsis
thaliana tubulin mutant with conditional root-skewing phenotype. J. Plant
Res. 120, 635-640.
Ishida, T., Kaneko, Y., Iwano, M., and Hashimoto, T. (2007). Helical microtubule arrays in a collection of
twisting tubulin mutants of Arabidopsis
thaliana. Proc. Natl. Acad. Sci. USA 104,
8544-8549.
Jones, M.A., Raymond, M.J., and Smirnoff, N. (2006). Analysis of the root-hair morphogenesis
transcriptome reveals the molecular identity of six genes with roles in
root-hair development in Arabidopsis.
Plant J. 45, 83-100.
Kim, G.T., Shoda, K., Tsuge, T., Cho, K.H., Uchimiya, H.,
Yokoyama, R., Nishitani, K., and Tsukaya, H. (2002). The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene,
regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf
cells and expression of a gene involved in cell-wall formation. Embo J. 21, 1267-1279.
Kirik, V., Herrmann, U., Parupalli, C., Sedbrook, J.C., Ehrhardt,
D.W., and Hulskamp, M. (2007).
CLASP localizes in two discrete patterns on cortical microtubules and is
required for cell morphogenesis and cell division in Arabidopsis. J. Cell Sci. 120,
4416-4425.
Kirik, V., Grini, P.E., Mathur, J., Klinkhammer, I., Adler, K.,
Bechtold, N., Herzog, M., Bonneville, J.M., and Hulskamp, M. (2002a). The Arabidopsis
TUBULIN-FOLDING COFACTOR A gene is involved in the control of the
alpha/beta-tubulin monomer balance. Plant Cell 14, 2265-2276.
Kirik, V., Mathur, J., Grini, P.E., Klinkhammer, I., Adler, K.,
Bechtold, N., Herzog, M., Bonneville, J.M., and Hulskamp, M. (2002b). Functional analysis of the tubulin-folding
cofactor C in Arabidopsis thaliana.
Curr. Biol. 12, 1519-1523.
Komaki, S., Abe, T., Coutuer, S., Inze, D., Russinova, E., and
Hashimoto, T. (2010). Nuclear-localized
subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J. Cell Sci. 123, 451-459.
Kong, Z., Hotta, T., Lee, Y.R., Horio, T., and Liu, B. (2010). The g-Tubulin Complex Protein GCP4 Is
Required for Organizing Functional Microtubule Arrays in Arabidopsis thaliana. Plant Cell 22, 191-204.
Korolev, A.V., Buschmann, H., Doonan, J.H., and Lloyd, C.W. (2007). AtMAP70-5, a divergent member of the MAP70 family
of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J. Cell Sci. 120, 2241-2247.
Krishnakumar, S., and Oppenheimer, D.G. (1999). Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in
trichome branch formation and pollen tube growth. Development 126, 3079-3088.
Krupnova, T., Sasabe, M., Ghebreghiorghis, L., Gruber, C.W.,
Hamada, T., Dehmel, V., Strompen, G., Stierhof, Y.D., Lukowitz, W., Kemmerling,
B., Machida, Y., Hashimoto, T., Mayer, U., and Jurgens, G. (2009). Microtubule-Associated Kinase-like Protein RUNKEL
for Cell Plate Expansion in Arabidopsis Cytokinesis. Curr. Biol. 19, 6 pages.
Lalanne, E., Michaelidis, C., Moore, J.M., Gagliano, W., Johnson,
A., Patel, R., Howden, R., Vielle-Calzada, J.P., Grossniklaus, U., and Twell,
D. (2004). Analysis of transposon
insertion mutants highlights the diversity of mechanisms underlying male
progamic development in Arabidopsis.
Genetics 167, 1975-1986.
Lee, Y.R., Li, Y., and Liu, B. (2007). Two Arabidopsis
phragmoplast-associated kinesins play a critical role in cytokinesis during
male gametogenesis. Plant Cell 19, 2595-2605.
Lu, L., Lee, Y.R., Pan, R., Maloof, J.N., and Liu, B. (2005). An internal motor kinesin is associated with the
Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol
Biol Cell 16, 811-823.
Marcus, A.I., Li, W., Ma, H., and Cyr, R.J. (2003). A kinesin mutant with an atypical bipolar spindle
undergoes normal mitosis. Mol. Biol. Cell 14,
1717-1726.
Motose, H., Tominaga, R., Wada, T., Sugiyama, M., and Watanabe, Y. (2008). A NIMA-related protein kinase suppresses ectopic
outgrowth of epidermal cells through its kinase activity and the association
with microtubules. Plant J. 54, 829-844.
Müller, S., Han, S., and Smith, L.G. (2006). Two kinesins are involved in the spatial control of
cytokinesis in Arabidopsis thaliana. Curr. Biol. 16, 888-894.
Müller, S., Fuchs, E., Ovecka, M., Wysocka-Diller, J.,
Benfey, P.N., and Hauser, M.T. (2002). Two new loci, PLEIADE and HYADE,
implicate organ-specific regulation of cytokinesis in Arabidopsis. Plant Physiol. 130, 312-324.
Müller, S., Smertenko, A., Wagner, V., Heinrich, M.,
Hussey, P.J., and Hauser, M.T. (2004). The plant microtubule-associated
protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr.
Biol. 14, 412-417.
Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez,
D. (1998). Major chromosomal
rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149, 641-650.
Nakajima, K., Kawamura, T., and Hashimoto, T. (2006). Role of the SPIRAL1
gene family in anisotropic growth of Arabidopsis
thaliana. Plant Cell Physiol. 47, 513-522.
Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H., and
Hashimoto, T. (2004). SPIRAL1 encodes a
plant-specific microtubule-localized protein required for directional control
of rapidly expanding Arabidopsis cells.
Plant Cell 16, 1178-1190.
Nakamura, M., and Hashimoto, T. (2009). A mutation in the Arabidopsis
g-tubulin-containing complex causes helical growth and
abnormal microtubule branching. J. Cell Sci. 122, 2208-2217.
Naoi, K., and Hashimoto, T. (2004). A semidominant mutation in an Arabidopsis
mitogen-activated protein kinase phosphatase-like gene compromises cortical
microtubule organization. Plant Cell 16,
1841-1853.
Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H.,
Asada, T., Irie, K., Ito, M., Terada, M., Banno, H., Yamazaki, Y., and Machida,
Y. (2002). Expansion of the cell plate in
plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87-99.
Oppenheimer, D.G., Pollock, M.A., Vacik, J., Szymanski, D.B.,
Ericson, B., Feldmann, K., and Marks, M.D. (1997). Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis.
Proc. Natl. Acad. Sci. USA 94, 6261-6266.
Pastuglia, M., Azimzadeh, J., Goussot, M., Camilleri, C., Belcram,
K., Evrard, J.L., Schmit, A.C., Guerche, P., and Bouchez, D. (2006). Gamma-tubulin is essential for microtubule
organization and development in Arabidopsis.
Plant Cell 18, 1412-1425.
Perrin, R.M., Wang, Y., Yuen, C.Y., Will, J., and Masson, P.H. (2007). WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J. 49, 961-971.
Pignocchi, C., Minns, G.E., Nesi, N., Koumproglou, R., Kitsios,
G., Benning, C., Lloyd, C.W., Doonan, J.H., and Hills, M.J. (2009). ENDOSPERM DEFECTIVE1 Is a Novel
Microtubule-Associated Protein Essential for Seed Development in Arabidopsis. Plant Cell.
Reddy, V.S., Day, I.S., Thomas, T., and Reddy, A.S. (2004). KIC, a novel Ca2+ binding protein with one EF-hand
motif, interacts with a microtubule motor protein and regulates trichome
morphogenesis. Plant Cell 16, 185-200.
Sakai, T., Honing, H., Nishioka, M., Uehara, Y., Takahashi, M.,
Fujisawa, N., Saji, K., Seki, M., Shinozaki, K., Jones, M.A., Smirnoff, N.,
Okada, K., and Wasteneys, G.O.
(2008). Armadillo repeat-containing kinesins and a NIMA-related kinase are
required for epidermal-cell morphogenesis in Arabidopsis. Plant J. 53, 157-171.
Sedbrook, J.C., Ehrhardt, D.W., Fisher, S.E., Scheible, W.R., and
Somerville, C.R. (2004). The Arabidopsis SKU6/SPIRAL1 Gene Encodes a
Plus End-Localized Microtubule-Interacting Protein Involved in Directional Cell
Expansion. Plant Cell 16, 1506-1520.
Shoji, T., Narita, N.N., Hayashi, K., Asada, J., Hamada, T.,
Sonobe, S., Nakajima, K., and Hashimoto, T. (2004). Plant-specific microtubule-associated protein SPIRAL2 is
required for anisotropic growth in Arabidopsis.
Plant Physiol. 136, 3933-3944.
Spielman, M., Preuss, D., Li, F.L., Browne, W.E., Scott, R.J., and
Dickinson, H.G. (1997). TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124, 2645-2657.
Steinborn, K., Maulbetsch, C., Priester, B., Trautmann,
S., Pacher, T., Geiges, B., Kuttner, F., Lepiniec, L., Stierhof, Y.D., Schwarz,
H., Jurgens, G., and Mayer, U. (2002). The Arabidopsis PILZ group genes encode tubulin-folding cofactor
orthologs required for cell division but not cell growth. Genes Dev 16, 959-971.
Strompen, G., El Kasmi, F., Richter, S., Lukowitz, W., Assaad,
F.F., Jurgens, G., and Mayer, U.
(2002). The Arabidopsis HINKEL gene encodes a kinesin-related
protein involved in cytokinesis and is expressed in a cell cycle-dependent
manner. Curr. Biol. 12, 153-158.
Suetsugu, N., Yamada, N., Kagawa, T., Yonekura, H., Uyeda, T.Q.,
Kadota, A., and Wada, M. (2010). Two
kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. PNAS USA 107, 1-6.
Thitamadee, S., Tuchihara, K., and Hashimoto, T. (2002). Microtubule basis for left-handed helical growth in
Arabidopsis. Nature 417, 193-196.
Torres-Ruiz, R.A., and Jurgens, G. (1994). Mutations in the FASS
gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120, 2967-2978.
Traas, J., Bellini, C., Nacry, P., Kronenberger, J., Bouchez, D.,
and Caboche, M. (1995). Normal differentiation
patterns in plants lacking microtubular preprophase bands. Nature 375, 676–677.
Twell, D., Park, S.K., Hawkins, T.J., Schubert, D., Schmidt, R.,
Smertenko, A., and Hussey, P.J.
(2002). MOR1/GEM1 has an essential
role in the plant-specific cytokinetic phragmoplast. Nat. Cell Biol. 4, 711-714.
Vanstraelen, M., Van Damme, D., De Rycke, R., Mylle, E., Inze, D.,
and Geelen, D. (2006). Cell cycle-dependent
targeting of a kinesin at the plasma membrane demarcates the division site in
plant cells. Curr. Biol. 16, 308-314.
Walker, K.L., Muller, S., Moss, D., Ehrhardt, D.W., and Smith,
L.G. (2007). Arabidopsis TANGLED identifies the division plane throughout
mitosis and cytokinesis. Curr. Biol. 17,
1827-1836.
Wang, X., Zhu, L., Liu, B., Wang, C., Jin, L., Zhao, Q., and Yuan,
M. (2007). Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in
directional cell growth by destabilizing cortical microtubules. Plant Cell 19, 877-889.
Webb, M., Jouannic, S., Foreman, J., Linstead, P., and Dolan, L. (2002). Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT
HAIR 3 - a katanin-p60 protein. Development 129, 123-131.
Whittington, A.T., Vugrek, O., Wei, K.J., Hasenbein, N.G.,
Sugimoto, K., Rashbrooke, M.C., and Wasteneys, G.O. (2001). MOR1 is essential for organizing cortical microtubules in
plants. Nature 411, 610-613.
Xu, X.M., Zhao, Q., Rodrigo-Peiris, T., Brkljacic, J., He, C.S.,
Muller, S., and Meier, I. (2008).
RanGAP1 is a continuous marker of the Arabidopsis
cell division plane. Proc. Natl. Acad. Sci. USA 105, 18637-18642.
Yang, C.Y., Spielman, M., Coles, J.P., Li, Y., Ghelani, S.,
Bourdon, V., Brown, R.C., Lemmon, B.E., Scott, R.J., and Dickinson, H.G. (2003). TETRASPORE
encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J. 34, 229-240.
Yang, G., Gao, P., Zhang, H., Huang, S., and Zheng, Z.L. (2007). A mutation in MRH2 kinesin enhances the root hair
tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS ONE 2, e1074.
Yao, M., Wakamatsu, Y., Itoh, T.J., Shoji, T., and Hashimoto, T. (2008). Arabidopsis
SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause
state of microtubule dynamics. J. Cell Sci. 121, 2372-2381.
Yuen, C.Y., Pearlman, R.S., Silo-Suh, L., Hilson, P., Carroll,
K.L., and Masson, P.H. (2003). WVD2
and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol. 131, 493-506.
Zeng, C.J., Lee, Y.R., and Liu, B. (2009). The WD40 repeat protein NEDD1 functions in microtubule
organization during cell division in Arabidopsis
thaliana. Plant Cell 21, 1129-1140.
Zhong, R., Burk, D.H., Morrison, W.H., 3rd, and Ye, Z.H. (2002). A kinesin-like protein is essential for oriented
deposition of cellulose microfibrils and cell wall strength. Plant Cell 14, 3101-3117.
Zhou, J., Qiu, J., and Ye, Z.-H. (2007). Alteration in secondary wall deposition by overexpression
of the fragile fiber1 kinesin-like protein in Arabidopsis. J. Integr. Plant Biol. 49, 1235–1243.
No comments